{"title":"Photocatalytic slurry reactor for hydrogen production via water splitting","authors":"Hugo de Lasa, Angelo Escudero Romero","doi":"10.1016/j.coche.2025.101179","DOIUrl":null,"url":null,"abstract":"<div><div>This article reviews the performance of a photocatalytic Photo-CREC Water-II unit powered by near-UV, or alternatively by visible light, for hydrogen production via water splitting. The radiation equation and its solution are established via a Monte Carlo (MC) method, with simulations being validated experimentally with macroscopic radiation balances. A mesoporous anatase matrix with added palladium photocatalyst with good fluidizability properties is synthesized. The photocatalyst performance is evaluated using QYs (quantum yields) and PTEFs (photocatalytic thermodynamic efficiency factors). It is shown that the TiO<sub>2</sub>–noble metal photocatalyst displays, in Photo-CREC Water-II using near-UV and ethanol as a scavenger, QYs and PTEFs of 0.35 and 0.247, respectively. The reported results pave the way for establishing the irradiation, the photocatalyst loading, the ethanol scavenger concentration, and the pH operating conditions required in an upscaled slurry Photo-CREC Water-II reactor, for producing commercially significant amounts of H<sub>2</sub>.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"50 ","pages":"Article 101179"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000917","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews the performance of a photocatalytic Photo-CREC Water-II unit powered by near-UV, or alternatively by visible light, for hydrogen production via water splitting. The radiation equation and its solution are established via a Monte Carlo (MC) method, with simulations being validated experimentally with macroscopic radiation balances. A mesoporous anatase matrix with added palladium photocatalyst with good fluidizability properties is synthesized. The photocatalyst performance is evaluated using QYs (quantum yields) and PTEFs (photocatalytic thermodynamic efficiency factors). It is shown that the TiO2–noble metal photocatalyst displays, in Photo-CREC Water-II using near-UV and ethanol as a scavenger, QYs and PTEFs of 0.35 and 0.247, respectively. The reported results pave the way for establishing the irradiation, the photocatalyst loading, the ethanol scavenger concentration, and the pH operating conditions required in an upscaled slurry Photo-CREC Water-II reactor, for producing commercially significant amounts of H2.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.