Adrian Yaya-González , Jessica Laika , Yeimmy Peralta-Ruiz
{"title":"新兴的食品安全非热技术:趋势、限制和未来研究","authors":"Adrian Yaya-González , Jessica Laika , Yeimmy Peralta-Ruiz","doi":"10.1016/j.coche.2025.101178","DOIUrl":null,"url":null,"abstract":"<div><div>Food safety has become a critical global concern. The primary causes of food deterioration and subsequent loss include spoilage by harmful microorganisms and toxic substances that threaten human health. Emerging nonthermal technologies have been developed as alternatives to mitigate or eliminate these losses. These methods include pulsed electric fields, cold plasma, high-pressure processing, ultrasound technology, and photodynamic inactivation. This review summarizes the principles governing each technology and its effects on key food parameters. Additionally, it explores the critical factors influencing the scalability of these technologies and their applicability to various food matrices. Finally, a brief discussion addresses the main limitations and challenges from an engineering perspective, including efficiency, economic constraints, energy consumption, and regulatory compliance barriers.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"49 ","pages":"Article 101178"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging nonthermal technologies for food safety: trends, limitations, and future research\",\"authors\":\"Adrian Yaya-González , Jessica Laika , Yeimmy Peralta-Ruiz\",\"doi\":\"10.1016/j.coche.2025.101178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Food safety has become a critical global concern. The primary causes of food deterioration and subsequent loss include spoilage by harmful microorganisms and toxic substances that threaten human health. Emerging nonthermal technologies have been developed as alternatives to mitigate or eliminate these losses. These methods include pulsed electric fields, cold plasma, high-pressure processing, ultrasound technology, and photodynamic inactivation. This review summarizes the principles governing each technology and its effects on key food parameters. Additionally, it explores the critical factors influencing the scalability of these technologies and their applicability to various food matrices. Finally, a brief discussion addresses the main limitations and challenges from an engineering perspective, including efficiency, economic constraints, energy consumption, and regulatory compliance barriers.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"49 \",\"pages\":\"Article 101178\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000905\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000905","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Emerging nonthermal technologies for food safety: trends, limitations, and future research
Food safety has become a critical global concern. The primary causes of food deterioration and subsequent loss include spoilage by harmful microorganisms and toxic substances that threaten human health. Emerging nonthermal technologies have been developed as alternatives to mitigate or eliminate these losses. These methods include pulsed electric fields, cold plasma, high-pressure processing, ultrasound technology, and photodynamic inactivation. This review summarizes the principles governing each technology and its effects on key food parameters. Additionally, it explores the critical factors influencing the scalability of these technologies and their applicability to various food matrices. Finally, a brief discussion addresses the main limitations and challenges from an engineering perspective, including efficiency, economic constraints, energy consumption, and regulatory compliance barriers.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.