{"title":"Micro(nano)plastic and per- and polyfluoroalkyl substances in soil/sediment–water ecosystems: sources, transport, interactions, and challenges","authors":"Rakesh Kumar , Pawan Kumar Rose , Pushpa Kumari Sharma , Jasmeet Lamba , Manish Kumar , Prosun Bhattacharya","doi":"10.1016/j.coche.2025.101125","DOIUrl":"10.1016/j.coche.2025.101125","url":null,"abstract":"<div><div>This article provides an overview of the contamination of micro(nano)plastics and per- and polyfluoroalkyl substances (PFAS) and their behavior in natural environmental settings. Interaction between micro(nano)plastics and PFAS is governed by functional groups, polarity, crystallinity, surface area, surface morphology, size, solution chemistry (i.e. pH, salinity, and organic matter), aging, and biofilm. Micro(nano)plastic adsorbs long-chain PFAS primarily via strong hydrophobic attraction (hydrophobic C–F chain tail of PFAS molecule), strong electrostatic attraction due to short-chain PFAS, and pore filling (high quantities of mesopores). Finally, this paper concludes the co-transport and enrichment of micro(nano)plastics and PFAS in sediments and aquatic environments.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101125"},"PeriodicalIF":8.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143759102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perspective in the industrial applications of sonoelectrochemical hydrogen production","authors":"Md Hujjatul Islam , Bruno G Pollet","doi":"10.1016/j.coche.2025.101122","DOIUrl":"10.1016/j.coche.2025.101122","url":null,"abstract":"<div><div><em>Sonoelectrochemistry</em> is the incorporation of power ultrasound in electrochemistry. The use of ultrasound in electrochemical processes such as water electrolysis can lead to an energy efficiency enhancement in the range of 2–25% in low-temperature water electrolysers (LT-WE). However, this improvement greatly depends upon several factors such as the cell reactor design, the ultrasonic frequency, the transmitted acoustic power, and the distance between the ultrasonic transducer and the electrode. The main objectives of this review are to highlight recent advancements in using power ultrasound in water electrolysis and shed some light on possible commercial development by addressing the fundamental obstacles that lie in this technology. Several research works have highlighted that the efficiency improvement in ultrasound-aided water electrolysis is principally due to the gas bubble removal from the electrode surface, which ultimately reduces the ohmic resistance of the electrolytic cell. However, even with the observed higher efficiencies from the <em>sonoelectrolysers</em> for hydrogen production in R&D labs, this technology still faces challenges for further development due to the efficiency in competing with commercial LT-WEs, which are already in the range of 60–70%. If <em>sonoelectrolysers</em> are to succeed for commercial development and large-scale industrial applications, they would need to achieve overall efficiency much higher than current commercial LT-WEs.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101122"},"PeriodicalIF":8.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HiGee process intensification in biorefineries: innovations, challenges, and outlook","authors":"Kamelia Boodhoo, Fernando Russo Abegão","doi":"10.1016/j.coche.2025.101119","DOIUrl":"10.1016/j.coche.2025.101119","url":null,"abstract":"<div><div>Biorefineries will play a crucial role in the circular and net-zero economies of the future. To enable these sustainable factories to thrive, it is essential to overcome processing challenges associated with streams complexity, variability, degree of dilution and stability of products, amongst others. Process intensification strategies based on centrifugal force fields or high gravity (HiGee) fields provide promising solutions for rapid heat and mass transfer in fast reactions and/or systems where mixing of fluids is challenging. The applications of HiGee intensification techniques to biorefining processes for oil and sugar solutions, multiphase systems using liquid–liquid or solid suspension streams and thermochemical processes amongst others are highlighted in this short review. The state of the art and the current technology successes and limitations are discussed, identifying key areas for future development and providing an outlook for industrial uptake.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101119"},"PeriodicalIF":8.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancement in innovative strategies for poly (ethylene terephthalate) biodegradation","authors":"Anamika Kushwaha, Lalit Goswami, Beom Soo Kim","doi":"10.1016/j.coche.2025.101121","DOIUrl":"10.1016/j.coche.2025.101121","url":null,"abstract":"<div><div>The present review thoroughly illustrates the recent advancements in the innovative strategies of poly (ethylene terephthalate) (PET) biodegradation. It encompasses the involvement of the optimization of pretreatment process, microbes-mining, mixed strain/multi-enzyme approach, supplementation of auxiliary agents, enzyme and molecular engineering, and so on, with further delving into the inclusion of smarter technologies such as computational modeling, molecular mechanics, docking simulation, and machine learning. Finally, the review anticipates rejuvenating the traditional PET biodegradation process, offering more advanced, sustainable, green, fast, economic, and efficient techniques for PET biodegradation.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101121"},"PeriodicalIF":8.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitoria H Cauduro , Gustavo Gohlke , Nicole W da Silva , Adriano G Cruz , Erico MM Flores
{"title":"A review on scale-up approaches for ultrasound-assisted extraction of natural products","authors":"Vitoria H Cauduro , Gustavo Gohlke , Nicole W da Silva , Adriano G Cruz , Erico MM Flores","doi":"10.1016/j.coche.2025.101120","DOIUrl":"10.1016/j.coche.2025.101120","url":null,"abstract":"<div><div>The extraction of bioactive compounds from natural sources is a topic of great interest. In this sense, ultrasound-assisted extraction (UAE) has emerged as a promising technology for fast and efficient extraction of natural products without high organic solvent consumption. However, most studies on UAE are focused on laboratory scale. In order for this technology to be suitable for industrial applications, more pilot studies need to be developed and discussed. In this sense, this review aimed to address scale-up applications of UAE of natural products developed from 2019 to the first semester of 2024. Applications involving hydrodynamic cavitation were not included in this review. Key parameters related to ultrasound were addressed, such as reactor configuration, process type (batch or continuous), frequency, and others. Furthermore, the major challenges associated with the upscaling of UAE, as well as current trends and future perspectives were discussed. It was observed that flow cells were the main reactor type used in scale-up UAE of natural products and that flow-through was the main operation mode. The use of these devices enabled processing of higher sample volumes, possibly due to more homogeneous energy distribution in the reactor. Hence, further enhancements in this area should be expected. Furthermore, phenolic compounds were the main targets of extraction and low frequencies (<100 kHz) were used. However, a challenge remains regarding the lack of essential information in several publications, which makes comparison between studies difficult, as well as their reproduction. Nevertheless, scale-up UAE of natural products is a promising research area.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101120"},"PeriodicalIF":8.0,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143682639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Techniques for kinetic parameter estimation in free radical polymerization models","authors":"Lauren A Gibson, Kimberley B McAuley","doi":"10.1016/j.coche.2025.101117","DOIUrl":"10.1016/j.coche.2025.101117","url":null,"abstract":"<div><div>Free radical polymerization (FRP) systems can have many reactions, leading to many kinetic parameters. The most common method to obtain values for kinetic parameters is weighted-least squares estimation, which uses multiple types of measured responses. Error-in-variables model estimation is used when there is significant uncertainty in the model inputs. When FRP models have many unknown parameters, it is difficult to estimate them all uniquely, so modelers often resort to model simplification or subset selection methods for parameter estimation. The aim of this review is to describe the most common techniques that modelers use for kinetic parameter estimation in FRP models.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101117"},"PeriodicalIF":8.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raymond R Tan , Maria Victoria Migo-Sumagang , Kathleen B Aviso
{"title":"Recent trends in optimization models for industrial decarbonization","authors":"Raymond R Tan , Maria Victoria Migo-Sumagang , Kathleen B Aviso","doi":"10.1016/j.coche.2025.101118","DOIUrl":"10.1016/j.coche.2025.101118","url":null,"abstract":"<div><div>The global call for deep decarbonization poses the critical challenge of cutting greenhouse gas emissions from industrial operations. Decarbonization can be achieved with a mix of strategies and technologies, but decision-support models are needed to help optimize their emissions reduction portfolios. This review surveys the development and use of models to support industrial decarbonization decisions and proposes a research roadmap for the future. Four key modeling challenges are identified: epistemic uncertainties inherent in new technologies, feedback loops between techno-economic performance and technology selection, the interplay between multiple decision-makers, and embedding within a broader decarbonization context.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101118"},"PeriodicalIF":8.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143591531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nisha Singh , Nitin Khandelwal , Ryota Nakajima , Amina K Stoddart , Graham A Gagnon
{"title":"Nanoplastic mitigation technologies: challenges and sustainability considerations","authors":"Nisha Singh , Nitin Khandelwal , Ryota Nakajima , Amina K Stoddart , Graham A Gagnon","doi":"10.1016/j.coche.2025.101107","DOIUrl":"10.1016/j.coche.2025.101107","url":null,"abstract":"<div><div>The rise of plastic pollution has led to widespread environmental contamination by their tiny fragments, posing alarming environmental threats and health risks. Nanoplastics, NPs (<1000 nm) are particularly concerning due to their enhanced reactivity, potential to cross biological barriers and complex interactions with environmental matrices. Laboratory studies rely heavily on synthetic polystyrene beads, despite polystyrene constituting only 4.5% of global plastic production. Real-world NPs exist as hetero-aggregates with eco-corona layers, significantly altering their reactivity and toxicity. Furthermore, NPs interact with heavy metals and organic pollutants, modifying their fate and altering transport and remediation outcomes.</div><div>This perspective discusses the limitations of current water treatment plant (WTP) processes, highlighting emerging mitigation technologies, associated challenges, and the possibility of their incorporation into existing treatment settings. Enhanced adsorption, nano-enabled membrane filtration, photocatalytic degradation, magnetic microrobots, emulsions, deep eutectic solvents, and plasma technology show initial promise but face challenges like integration in existing treatment setups, high costs, regeneration difficulties, and potential for secondary pollution. Future research should focus on adapting mitigation techniques to diverse environmental matrices and their integration into existing setups, ensuring sustainability and resource recovery while achieving complete mineralization or recovery of NPs.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101107"},"PeriodicalIF":8.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of the application and future directions of high-power ultrasonic technology in environmental protection","authors":"JunJie Ma , Juanjuan Wang , Fulei Xu , Xiaoge Wu","doi":"10.1016/j.coche.2025.101105","DOIUrl":"10.1016/j.coche.2025.101105","url":null,"abstract":"<div><div>This review delves into the growing importance of power ultrasonic technology in the field of environmental protection, with a focus on its applications in wastewater treatment. It discusses various commercial transducer types, including piezoelectric, MEMS-based, air-coupled, high-frequency thin-film, magnetostrictive, and hybrid transducers, each with distinct characteristics and specific applications. The paper further assesses the effectiveness of power ultrasound in water treatment and resource recycling. Although power ultrasonic technology is still in the developmental stage and faces challenges such as high initial costs and energy consumption, this review looks to the future by identifying potential directions, such as the combination of power ultrasound with other advanced processes like catalytic oxidation and ozonation to further enhance treatment efficiency. It also emphasizes the integration of artificial intelligence and machine learning for process optimization.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101105"},"PeriodicalIF":8.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143550202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kimberley B McAuley , Jonathan P McMullen , Salvador Garcia Muñoz
{"title":"Editorial overview: Digital design of pharmaceutical manufacturing processes","authors":"Kimberley B McAuley , Jonathan P McMullen , Salvador Garcia Muñoz","doi":"10.1016/j.coche.2025.101108","DOIUrl":"10.1016/j.coche.2025.101108","url":null,"abstract":"","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101108"},"PeriodicalIF":8.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143550312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}