Sachini Supunsala Senadheera , Xiangzhou Yuan , Baojun Yi , Seong Kyun Im , Yong Sik Ok
{"title":"Plasma-modified biochar for energy and environmental sustainability","authors":"Sachini Supunsala Senadheera , Xiangzhou Yuan , Baojun Yi , Seong Kyun Im , Yong Sik Ok","doi":"10.1016/j.coche.2025.101166","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar has recently emerged as a sustainable material with broad applicability in energy storage, contaminant removal, and carbon capture. However, its performance in these domains is often limited by intrinsic surface properties, including porosity and the abundance of functional groups. Plasma treatment has emerged as a promising postsynthesis strategy to tailor biochar’s surface chemistry and morphology. This short review highlights recent advances in the use of plasma-modified biochar for electrochemical energy storage, pollutant adsorption, and CO₂ capture. In energy storage, plasma modification enhances capacitance particularly in activated biochar by increasing surface area and functional group density. For CO₂ capture, nitrogen doping via plasma processes significantly improves adsorption capacity by enhancing surface basicity and affinity toward CO₂ molecules. In contaminant remediation, plasma treatment introduces oxygen- and nitrogen-containing functional groups, increases hydrophilicity, and promotes the formation of surface defects and active sites, collectively improving adsorption of metals and organic pollutants. Despite these promising advancements, research on plasma-treated biochar remains in its early stages, particularly in the context of direct CO₂ capture, warranting further investigation. Overall, plasma modification offers a versatile, scalable route to enhance the physicochemical properties of biochar, positioning it as a multifunctional platform for environmental and energy-related applications.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"49 ","pages":"Article 101166"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000784","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar has recently emerged as a sustainable material with broad applicability in energy storage, contaminant removal, and carbon capture. However, its performance in these domains is often limited by intrinsic surface properties, including porosity and the abundance of functional groups. Plasma treatment has emerged as a promising postsynthesis strategy to tailor biochar’s surface chemistry and morphology. This short review highlights recent advances in the use of plasma-modified biochar for electrochemical energy storage, pollutant adsorption, and CO₂ capture. In energy storage, plasma modification enhances capacitance particularly in activated biochar by increasing surface area and functional group density. For CO₂ capture, nitrogen doping via plasma processes significantly improves adsorption capacity by enhancing surface basicity and affinity toward CO₂ molecules. In contaminant remediation, plasma treatment introduces oxygen- and nitrogen-containing functional groups, increases hydrophilicity, and promotes the formation of surface defects and active sites, collectively improving adsorption of metals and organic pollutants. Despite these promising advancements, research on plasma-treated biochar remains in its early stages, particularly in the context of direct CO₂ capture, warranting further investigation. Overall, plasma modification offers a versatile, scalable route to enhance the physicochemical properties of biochar, positioning it as a multifunctional platform for environmental and energy-related applications.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.