Laura Valenzuela , Zahraa Abou Khalil , Agnieszka M. Ruppert , Marco Daturi , Mohammad El-Roz , Nicolas Keller
{"title":"Hydrogen production by photocatalytic dehydrogenation of formic acid","authors":"Laura Valenzuela , Zahraa Abou Khalil , Agnieszka M. Ruppert , Marco Daturi , Mohammad El-Roz , Nicolas Keller","doi":"10.1016/j.coche.2025.101175","DOIUrl":null,"url":null,"abstract":"<div><div>This mini-review updates the most significant recent advances in the promising field of hydrogen production via photocatalytic dehydrogenation of formic acid. The focus is on utilizing formic acid both as a liquid organic hydrogen carrier and as an effective internal hydrogen source for driving hydrogenation reactions. We present a subjective overview of key developments from the past 3 years in both aqueous- and gas-phase reactions, as well as in the rapidly evolving field of dual-mode photonic/thermal catalysis. Particular attention is given to insights into reaction mechanisms through <em>operando</em> FTIR studies, which allow for the direct observation of surface intermediates and the elucidation of possible reaction pathways.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"49 ","pages":"Article 101175"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000875","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This mini-review updates the most significant recent advances in the promising field of hydrogen production via photocatalytic dehydrogenation of formic acid. The focus is on utilizing formic acid both as a liquid organic hydrogen carrier and as an effective internal hydrogen source for driving hydrogenation reactions. We present a subjective overview of key developments from the past 3 years in both aqueous- and gas-phase reactions, as well as in the rapidly evolving field of dual-mode photonic/thermal catalysis. Particular attention is given to insights into reaction mechanisms through operando FTIR studies, which allow for the direct observation of surface intermediates and the elucidation of possible reaction pathways.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.