工程技术最新文献

筛选
英文 中文
Happy mouth and fearful eyes: insights into emotional facial features from ERP. 快乐的嘴和恐惧的眼睛:ERP对情绪面部特征的洞察。
IF 3.9 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-09-01 DOI: 10.1007/s11571-025-10327-w
Bin Zhan, Ziwei Ren, Shuaixia Li, Yiwen Li, Mingming Zhang, Weiqi He
{"title":"Happy mouth and fearful eyes: insights into emotional facial features from ERP.","authors":"Bin Zhan, Ziwei Ren, Shuaixia Li, Yiwen Li, Mingming Zhang, Weiqi He","doi":"10.1007/s11571-025-10327-w","DOIUrl":"https://doi.org/10.1007/s11571-025-10327-w","url":null,"abstract":"<p><p>Facial expressions enable individuals to assess and understand emotions conveyed by others. Two crucial sources of expressive cues on the human face-the eyes and the mouth-capture attention and serve as reliable shortcuts for expression recognition. However, how the brain effectively extracts emotional information from these diagnostic features remains unknown. We investigated this issue using an electroencephalogram combined with a rapid serial visual presentation task in which participants were asked to recognize facial expressions (fear, happiness, and neutrality) from three formats (whole face, eye region, and mouth region). We found that participants recognized happy expressions from the mouth region more accurately than the other expressions, affirming the role of diagnostic features in facilitating bottom-up attentional capture. The isolated eye region with higher visual saliency induced the largest P1 component. Diagnostic features, such as a happy mouth and fearful eyes, elicited a larger N170 component compared to non-diagnostic features, such as a fearful mouth and happy eyes. Source analysis of N170 showed that the fusiform gyrus exhibited similar patterns in response to these emotional features. The P3 was effective in discriminating between different emotional content. When whole faces were visible, fearful and happy expressions were not distinguishable in the N170, while the P3 amplitude was larger when induced by fearful faces than by happy faces. Our study contributes to understanding how facial features play distinct roles in emotional perception, attention, and facial processing.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"143"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144991649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 修正。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-07 DOI: 10.1080/21691401.2025.2476906
{"title":"Correction.","authors":"","doi":"10.1080/21691401.2025.2476906","DOIUrl":"https://doi.org/10.1080/21691401.2025.2476906","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"104"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. 撤回声明:杨梅素纳米脂质体诱导sirt3介导的糖酵解代谢导致胶质母细胞瘤细胞死亡。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-03-27 DOI: 10.1080/21691401.2025.2465942
{"title":"Statement of Retraction: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death.","authors":"","doi":"10.1080/21691401.2025.2465942","DOIUrl":"https://doi.org/10.1080/21691401.2025.2465942","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"56"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome and nutritional composition analysis of stacked transgenic maize with insect resistance and herbicide tolerance. 抗虫抗除草剂转基因玉米堆叠体转录组和营养成分分析。
IF 4.5 2区 农林科学
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Pub Date : 2025-12-01 Epub Date: 2025-02-27 DOI: 10.1080/21645698.2025.2472451
Xiaoxing Yu, Hongyu Gao, Pengfei Wang
{"title":"Transcriptome and nutritional composition analysis of stacked transgenic maize with insect resistance and herbicide tolerance.","authors":"Xiaoxing Yu, Hongyu Gao, Pengfei Wang","doi":"10.1080/21645698.2025.2472451","DOIUrl":"10.1080/21645698.2025.2472451","url":null,"abstract":"<p><p>The safety assessment of stacked transgenic crops is essential for their commercial cultivation. A crucial element of safety assessment is the nutritional evaluation of transgenic crops. Currently, profiling methods like transcriptome are employed as supplemental analytical tools to find the unintended effects of transgenic crops. In this study, stacked transgenic maize ZDRF8×nCX-1 was produced by crossing of two transgenic maize events ZDRF8 and nCX-1. This stacked transgenic maize expresses five genes: <i>cry1Ab</i>, <i>cry2Ab</i> and <i>g10evo-epsps</i> (from ZDRF8), as well as <i>cp4 epsps</i> and <i>P450-N-Z1</i> (from nCX-1). Molecular analysis showed that the insertion sites of target genes were not changed during stack breeding, and the target genes are effectively expressed at both RNA and protein levels in ZDRF8×nCX-1. Target trait analysis showed that ZDRF8×nCX-1 exhibits tolerant to glyphosate, flazasulfuron and MCPA, and is resistant to damage by corn borers. Transcriptome analysis revealed that gene-stacked maize ZDRF8×nCX-1 did not significantly alter transcriptome profiles compared to the transgenic maize events ZDRF8 and nCX-1. Nutritional composition analysis showed that the grain profile of ZDRF8×nCX-1 was substantially equivalent to that of the non-transgenic counterpart. These results suggest that hybrid stacking does not cause significantly unintended effects beyond providing the intended beneficial traits.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"216-234"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late blight field resistance in potatoes carrying Solanum americanum resistance genes (Rpi-amr3 and Rpi-amr1). 携带美洲茄抗病基因(Rpi-amr3和Rpi-amr1)的马铃薯的晚疫病抗性
IF 4.5 2区 农林科学
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Pub Date : 2025-12-01 Epub Date: 2025-03-23 DOI: 10.1080/21645698.2025.2479913
Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson
{"title":"Late blight field resistance in potatoes carrying <i>Solanum americanum</i> resistance genes (Rpi-amr3 and Rpi-amr1).","authors":"Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson","doi":"10.1080/21645698.2025.2479913","DOIUrl":"10.1080/21645698.2025.2479913","url":null,"abstract":"<p><p>Potato (<i>Solanum tuberosum</i> L.) is an important global crop, but its production is severely impacted by late blight, caused by the pathogen <i>Phytophthora infestans</i>. The economic burden of this disease is significant, and current control strategies rely mainly on fungicides, which face increasing regulatory and environmental constraints. To address this challenge, potatoes with resistance genes from wild potato relatives offer a promising solution. This study evaluated field resistance to late blight in potato lines (Maris Piper) containing the <i>Solanum americanum</i> resistance genes <i>Rpi-amr3</i> and <i>Rpi-amr1</i> across three years (2018-2020) in Sweden. Field trials were conducted under natural infection conditions to assess disease resistance. Results showed that the transgenic lines conferred strong resistance to late blight compared to the susceptible control. However, slight late blight symptoms were observed in the transgenic lines. These results highlight the effectiveness of <i>S. americanum</i> resistance genes in providing strong resistance, and emphasize the potential of stacking multiple R genes, including these genes to maintain efficacy. This research supports the development of resistant potato varieties as a sustainable alternative to chemical control, promoting food security and environmentally friendly agriculture.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"263-271"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization. 人和羊主动脉瓣的嘌呤能外泌酶:细菌纳米纤维素支架细胞化的指标。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-05-12 DOI: 10.1080/21691401.2025.2502033
Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski
{"title":"Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization.","authors":"Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski","doi":"10.1080/21691401.2025.2502033","DOIUrl":"https://doi.org/10.1080/21691401.2025.2502033","url":null,"abstract":"<p><p>Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"219-230"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive cholinergic feedback network oscillations: insights into striatal beta oscillations and circuit dynamics. 自适应胆碱能反馈网络振荡:纹状体β振荡和电路动力学的见解。
IF 3.9 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-07-23 DOI: 10.1007/s11571-025-10301-6
Ziling Wang, Dandan Qian, Songting Li, Wei Lu, Douglas Zhou
{"title":"Adaptive cholinergic feedback network oscillations: insights into striatal beta oscillations and circuit dynamics.","authors":"Ziling Wang, Dandan Qian, Songting Li, Wei Lu, Douglas Zhou","doi":"10.1007/s11571-025-10301-6","DOIUrl":"10.1007/s11571-025-10301-6","url":null,"abstract":"<p><p>Enhanced beta oscillations (12-25 Hz) within the cortico-basal ganglia-thalamic network are significantly associated with motor deficits and are a prominent characteristic of the neural dynamic pathology in Parkinson's disease. Although the striatum has been proposed as a promising origin for enhanced beta oscillations, the precise mechanism through which distinct striatal neurons collaborate to orchestrate beta oscillations remains elusive. This study constructs a biophysical neural network model of the striatum based on experimental constraints. The model faithfully reproduces various experimental observations, including dopamine-dependent beta oscillations and phase-locked firing patterns. Through both theoretical and numerical analysis, our analysis reveals that striatal beta oscillations emerge from interactions within the cellular architecture, particularly the somatostatin-expressing interneurons (SOM) driven choline acetyltransferase-expressing interneurons (ChAT)-indirect pathway striatal projection neurons (iSPN) loop. Our results underscore the critical role of ChATs in enhancing beta oscillations. ChATs, instead of passively providing excitatory drive, actively amplify beta oscillations by enhancing their excitation efficacy through a phase-locked mode. Additionally, the inhibitory interactions among iSPNs, with robust and slow inhibitory recovery dynamics within iSPNs, potentially result in beta oscillations. The slow inhibitory recovery is likely attributed to the slow dynamics of the KCNQ current. SOMs further modulate the beta oscillations by affecting their downstream ChAT-iSPN loop. These results provide novel insights into the mechanism underlying striatal beta oscillations, shedding light on the processes involved in beta oscillations generation during pathological states.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"117"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144728382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DSTA-Net: dynamic spatio-temporal feature augmentation network for motor imagery classification. DSTA-Net:用于运动图像分类的动态时空特征增强网络。
IF 3.9 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-07-23 DOI: 10.1007/s11571-025-10296-0
Liang Chang, Banghua Yang, Jiayang Zhang, Tie Li, Juntao Feng, Wendong Xu
{"title":"DSTA-Net: dynamic spatio-temporal feature augmentation network for motor imagery classification.","authors":"Liang Chang, Banghua Yang, Jiayang Zhang, Tie Li, Juntao Feng, Wendong Xu","doi":"10.1007/s11571-025-10296-0","DOIUrl":"10.1007/s11571-025-10296-0","url":null,"abstract":"<p><p>Accurate decoding and strong feature interpretability of Motor Imagery (MI) are expected to drive MI applications in stroke rehabilitation. However, the inherent nonstationarity and high intra-class variability of MI-EEG pose significant challenges in extracting reliable spatio-temporal features. We proposed the Dynamic Spatio-Temporal Feature Augmentation Network (DSTA-Net), which combines DSTA and the Spatio-Temporal Convolution (STC) modules. In DSTA module, multi-scale temporal convolutional kernels tailored to the α and β frequency bands of MI neurophysiological characteristics, while raw EEG serve as a baseline feature layer to retain original information. Next, Grouped Spatial Convolutions extract multi-level spatial features, combined with weight constraints to prevent overfitting. Spatial convolution kernels map EEG channel information into a new spatial domain, enabling further feature extraction through dimensional transformation. And STC module further extracts features and conducts classification. We evaluated DSTA-Net on three public datasets and applied it to a self-collected stroke dataset. In tenfold cross-validation, DSTA-Net achieved average accuracy improvements of 6.29% (<i>p</i> < 0.01), 3.05% (<i>p</i> < 0.01), 5.26% (<i>p</i> < 0.01), and 2.25% over the ShallowConvNet on the BCI-IV-2a, OpenBMI, CASIA, and stroke dataset, respectively. In hold-out validation, DSTA-Net achieved average accuracy improvements of 3.99% (<i>p</i> < 0.01) and 4.2% (<i>p</i> < 0.01) over the ShallowConvNet on the OpenBMI and CASIA datasets, respectively. Finally, we applied DeepLIFT, Common Spatial Pattern, and t-SNE to analyze the contributions of individual EEG channels, extract spatial patterns, and visualize features. The superiority of DSTA-Net offers new insights for further research and application in MI. The code is available in https://github.com/CL-Cloud-BCI/DSTANet-code.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"118"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144728383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. 突触可塑性的改变和大脑振荡与青春期自噬诱导的突触修剪有关。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI: 10.1007/s11571-024-10185-y
Hui Wang, Xiaxia Xu, Zhuo Yang, Tao Zhang
{"title":"Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence.","authors":"Hui Wang, Xiaxia Xu, Zhuo Yang, Tao Zhang","doi":"10.1007/s11571-024-10185-y","DOIUrl":"10.1007/s11571-024-10185-y","url":null,"abstract":"<p><p>Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.5 months) and adult (3 months) rats. Long term potentiation (LTP) and neural synchrony were analyzed. The results showed that the LTP was the lowest in adolescent rats. During development, the theta coupling strength was increased progressively but there was no significant change of gamma coupling between young rats and adolescent rats. The density of dendrite spines was decreased progressively during development. The lowest levels of NR2A, NR2B and PSD95 were detected in adolescent rats. Importantly, it was found that the expression levels of autophagy markers were the highest during adolescent compared to that in other developmental stages. Moreover, there were more co-localization of autophagosome and PSD95 in adolescent rats. It suggests that autophagy is possibly involved in synaptic elimination during adolescence, and further impacts synaptic plasticity and neural synchrony.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"2"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. 在运动诱导疲劳小鼠模型中,运动皮层的β带振荡和峰-局部场电位同步与运动缺陷相关。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI: 10.1007/s11571-024-10182-1
Xudong Zhao, Hualin Wang, Ke Li, Shanguang Chen, Lijuan Hou
{"title":"Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model.","authors":"Xudong Zhao, Hualin Wang, Ke Li, Shanguang Chen, Lijuan Hou","doi":"10.1007/s11571-024-10182-1","DOIUrl":"10.1007/s11571-024-10182-1","url":null,"abstract":"<p><p>Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial. Despite its importance, the neural mechanisms underlying fatigue remain inadequately explored. In this study, we employed electrophysiological recordings in the M1 region of mice to investigate how excitation-inhibition dynamics and neural oscillations are regulated during exercise-induced fatigue. We observed that fatigue led to decreased voluntary physical activity and cognitive performance, manifesting as reduced running wheel distance, mean speed, exercise intensity, and exploratory behaviour. At the neural level, we detected increased firing frequencies for M1 neurons, including both pyramidal neurons and interneurons, along with heightened beta-band oscillatory activity and stronger coupling between beta-band oscillations and interneurons. These findings enhance our understanding of the mechanisms underlying fatigue, offering insights into behavioural, excitability, and oscillatory changes. The results of this study could pave the way for the development of novel intervention strategies to combat fatigue.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"3"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信