{"title":"Memristor-Based Circuit Demonstration of Hybrid Gated Recurrent Unit for Edge Computing","authors":"Xiangrong Pu;Haoming Qi;Gang Liu;Zhang Zhang","doi":"10.1109/TNANO.2025.3614198","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3614198","url":null,"abstract":"In industrial IoT and distributed computing environments, edge computing devices empowered by AI have seen increasing deployment in large-scale scenarios, thereby accelerating the demand for time-series data processing. The gated recurrent unit (GRU) outperforms conventional artificial neural networks (ANNs) in tasks such as natural language processing, speech recognition, and machine translation, due to its superior capability in modeling long-range dependencies in sequential data. However, the GRU model is limited by its large parameter count and structural complexity, which presents a bottleneck in hardware circuit implementation. To this end, a memristor-based hybrid gated recurrent unit (HGRU) is proposed, which reduces the parameter count to 67% of the original GRU and shortens the single-step computation latency by 50%, while maintaining complete circuit functionality. Finally, the proposed memristor-based HGRU circuit model is evaluated on the MNIST digit recognition and IMDB sentiment analysis tasks, achieving recognition accuracies of 97% and 86.2%, respectively. Under equivalent parameter settings, it achieves runtime reductions of 37% and 52% compared to the standard GRU, thereby significantly enhancing computational efficiency.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"481-488"},"PeriodicalIF":2.1,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Ultra-Low Power 1.2 pJ/Spike Fully CMOS Spiking Neuron and Its Application","authors":"Prashant Kumar;Rajeev Kumar Ranjan;Sung-Mo Kang","doi":"10.1109/TNANO.2025.3613362","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3613362","url":null,"abstract":"Electronic neurons, such as integrate-and-fire models and memristor synapses, are key components of energy-efficient spiking neural network (SNN) systems. Current silicon-based models face challenges due to high transistor counts, large footprints, and excessive energy consumption. This brief presents a low-transistor count, energy-efficient neuron design. Our spiking signal-generating circuit consumes approximately 1.2 pJ per spike and uses a single capacitor as its only passive element, while occupying a layout area of 66.93 <inline-formula><tex-math>$mathrm{mu }$</tex-math></inline-formula>m × 36.12 <inline-formula><tex-math>$mathrm{mu }$</tex-math></inline-formula>m and operating on a 1 V power supply. We also highlight the driving capability and pattern recognition application of our proposed neuron model.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"462-468"},"PeriodicalIF":2.1,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julien Lombardi;Fariha Reza;Nasim Farahmand;Rajinder Deol;Nitika Batra;Jonathan E. Spanier;Christine K. McGinn;Ioannis Kymissis;Stephen O’Brien
{"title":"Linear, Non-Linear, and Ferroelectric Behavior in 0–3 Nanoparticle-Polymer Dielectrics of Ba(Ti, MV)O3 (M = Nb, Ta)","authors":"Julien Lombardi;Fariha Reza;Nasim Farahmand;Rajinder Deol;Nitika Batra;Jonathan E. Spanier;Christine K. McGinn;Ioannis Kymissis;Stephen O’Brien","doi":"10.1109/TNANO.2025.3606832","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3606832","url":null,"abstract":"Nanodielectrics based upon nanoscale Ba(Ti, M<sup>V</sup>)O<sub>3</sub>, where M = Nb or Ta, were prepared and electrically characterized for their potential use as a high permittivity dielectric layer. Nanocrystals of Ba(Ti, Nb)O<sub>3</sub> (BTNO) and Ba(Ti, Ta)O<sub>3</sub> (BTTO) of average size 20 nm (range 10–50 nm) with a non-centrosymmetric (polarizable) crystal structure were synthesized, dispersed in alcohol solvents and blended with three polymers of known but differing dielectric and electromechanical behavior: Polyvinylpyrrolidone (PVP), Polyfurfuryl alcohol (PFA) and Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE). 0–3 nanoparticle-polymer pressed pellets, films and metal-insulator-metal devices were prepared for electrical characterization. Analysis of the Ba(Ti, M<sup>V</sup>)O<sub>3</sub>-PVP and Ba(Ti, M<sup>V</sup>)O<sub>3</sub> -PFA composites showed a high effective permittivity, low loss, low leakage and voltage tolerance, demonstrating the capability for high energy density capacitance. Effective permittivity, of 52 (BTNO-PFA) and 42 (BTTO-PFA) for pellet nanocomposites and 32 (BTNO-PVP) and 20 (BTNO-PVP) film nanocomposites were observed at 1 MHz respectively. Voltage breakdown strengths of 2133 V/mm (BTNO) and 833 V/mm (BTTO) were demonstrated respectively (threshold 0.1 μA). Linear and non-linear dielectric behavior was studied by polarization-electric field (P-E) hysteresis measurements. Nanocomposites of BTNO-PVDF-TrFE were prepared to assess the viability of making ferroelectric nanocomposites over a range of polymer-nanoparticle volume fractions.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"452-461"},"PeriodicalIF":2.1,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxide-Trapped-Charge-Induced Gate-Diagonal Tunneling Suppression of Gate-Normal Tunnel Field-Effect Transistors","authors":"Kyung Min Koo;Jae Seung Woo;Woo Young Choi","doi":"10.1109/TNANO.2025.3605557","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3605557","url":null,"abstract":"We analyze the suppression of gate-diagonal tunneling by an oxide-trapped charge in gate-normal tunneling field effect transistors (TFETs). It is observed that the gate-diagonal tunneling occurring ahead of gate-normal tunneling can be alleviated by trapping electrons in the gate insulator over the channel region. Oxide-trapped charges can be generated by process technologies or hot carrier injections. Because the trapped electrons screen the gate voltage effectively and weaken the gate controllability over the gate-diagonal tunneling region, the achieved subthreshold swing and on-current are 27-% lower and 2.89x higher than those of conventional gate-normal TFETs, respectively.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"445-451"},"PeriodicalIF":2.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roshni Oommen;Adikiran S B;Akash R.;Gautham G;Aswathi R Nair
{"title":"Gate Tunable Retention in Optoelectronic Synapses Using Oxide Semiconductor Thin Film Transistors","authors":"Roshni Oommen;Adikiran S B;Akash R.;Gautham G;Aswathi R Nair","doi":"10.1109/TNANO.2025.3602073","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3602073","url":null,"abstract":"In this work we propose a biasing scheme to modulate the retention behavior of oxide semiconductor based optoelectronic synapses. The method has been demonstrated using a zinc oxide thin film transistor, which exhibits persistent photoconductivity to UV light. The application of a negative gate bias prevents the recombination of photo-generated carriers, leading to a negligible decay in the post synaptic current and consequently, the retention time could extend beyond <inline-formula><tex-math>$10^{5}$</tex-math></inline-formula>s. The improvement in memory retention is observed in various synaptic functions such as short-term memory, long-term memory, duration-time-dependent plasticity and paired pulse facilitation. A five fold improvement in the % decay of post synaptic current was observed at <inline-formula><tex-math>$V_{gs}$</tex-math></inline-formula> = −5 V, when compared to <inline-formula><tex-math>$V_{gs}$</tex-math></inline-formula> = +5 V. Furthermore, we have assessed the impact of these improved retention properties on the performance of an artificial neural network, designed for pattern recognition of MNIST handwritten digits. The accuracy decayed drastically with time from 96% to nearly 40% at <inline-formula><tex-math>$V_{gs}$</tex-math></inline-formula> = +5 V whereas it drops to only 94% at <inline-formula><tex-math>$V_{gs}$</tex-math></inline-formula> = −5 V.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"434-438"},"PeriodicalIF":2.1,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuying Wang;Pengpeng Ren;Yewei Zhang;Mingzhao Yang;Runsheng Wang;Zhigang Ji
{"title":"Towards Design-Technology Co-Optimization for Nanosheet Transistors With Backside Contact","authors":"Shuying Wang;Pengpeng Ren;Yewei Zhang;Mingzhao Yang;Runsheng Wang;Zhigang Ji","doi":"10.1109/TNANO.2025.3599842","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3599842","url":null,"abstract":"Nanosheet transistors has emerged as a potential structure of semiconductor technology. The introduction of Wrapped-Around Contact (WAC) and Backside Power Delivery Network, particularly the Backside Contact (BSC) in nanosheet transistors, has effectively promotes further scaling. This work contributes to design technology co-optimization (DTCO) for BSC technology by comprehensively exploring the impact of structural innovation, process parameters and dimension parameters. Through electro-thermal coupling simulations, we reveal the significant advantages of Backside Contact with WAC structure in terms of electrothermal properties compared to conventional structures. We also investigate the impact of contact resistivity, contact thermal resistivity, sheet width and number on device and circuit performance. This work provides an inspiration to optimize electro-thermal performance under advanced nodes.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"439-444"},"PeriodicalIF":2.1,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasil T K;Ashish Kumar Yadav;Gyanendra Kumar Maurya;Vivek Garg;Sushil Kumar Pandey
{"title":"Enhancement of Functionalized 1T-NbS2 Monolayer Properties for the Superior Anode of Na-Ion Batteries","authors":"Jasil T K;Ashish Kumar Yadav;Gyanendra Kumar Maurya;Vivek Garg;Sushil Kumar Pandey","doi":"10.1109/TNANO.2025.3597001","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3597001","url":null,"abstract":"One of the most important factors influencing the performance of Na-ion batteries (NIBs) is the anode’s quality. Currently, NIB anodes have numerous disadvantages, including low capacity, rapid volume change, temperature variable conductivity and poor thermal/chemical stability. In this work, the electronic and transport properties of undoped, doped and defective 1T-NbS<sub>2</sub> monolayers were investigated using density functional theory calculations. The maximum quantum capacitance of 1T-NbS<sub>2</sub> with S-vacancy (V<sub>S</sub>-NbS<sub>2</sub>) changes from 20.49 to 16.92 μF/cm<sup>2</sup> across temperature ranges of 200 K to 1000 K, indicating its suitability as anode with temperature-stable capacity. The 1T-NbS<sub>2</sub> monolayers exhibit high electrical conductivity with less than 6% fluctuation across a temperature range of 200 K to 1000 K, indicating thermally stable conductance. The 1T-NbS<sub>2</sub> layered structure has substantially larger interlayer spacing of 0.615 nm than the size of Na ion (0.095 nm), as well as a relatively tiny variation (0.05 eV for V<sub>S</sub>-NbS<sub>2</sub>) in cohesive energies between sodiated and de-sodiated phases, making it a good choice for anodes. For V<sub>S</sub>-NbS<sub>2</sub>, the seebeck coefficient ranges from -5 to -40 μV/K, which is often obtained by the most commonly used Na-metal anode, demonstrating its appropriateness as anode. According to our findings, 1T-NbS<sub>2</sub> is a great option for thermally stable NIB electrode applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"421-427"},"PeriodicalIF":2.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144887803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demonstration of Ferroelectric Tunnel Field-Effect Transistor for Low Power Synapse Device","authors":"Seungwon Go;Sunwoo Lee;Jaekyun Son;Dong Keun Lee;Hyungju Noh;Jae Yeon Park;Seonggeun Kim;Hyunho Ahn;Sihyun Kim;Sangwan Kim","doi":"10.1109/TNANO.2025.3595532","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3595532","url":null,"abstract":"In this paper, a ferroelectric tunnel field-effect transistor (FeTFET) is demonstrated as a synapse device. The experimental results clearly show that there are several merits in FeTFET as a synapse device comparing with the FeFET. First, the FeTFET shows the ∼3 orders lower drain current than the FeFET thanks to the different carrier injection mechanism (i.e., band-to-band tunneling). Second, the memory window of FeTFET (1.48 V) is ∼1.5 times larger than the FeFET (0.95 V) due to an enhanced erase efficiency. As a result, the FeTFET shows the better training accuracy (∼91.5% ) even with the ∼25 times lower energy consumption (∼0.16 mJ) comparing with the FeFET (∼90.4% accuracy with 4.06 mJ energy consumption). Lastly, the FeTFET shows a good retention property (> 10 years) with a ∼10<sup>7</sup> endurance characteristic. In short, the FeTFET can be a promising candidate for a low-power synapse device.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"413-416"},"PeriodicalIF":2.1,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermoelectric Modules Using Earth-Abundant Elements: The Case of Zn, Cu, Al, O, and S","authors":"Cheng-Lun Hsin;Kei-Cheng Yang;Chun-En Hong","doi":"10.1109/TNANO.2025.3595009","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3595009","url":null,"abstract":"Thermal waste heat scavenging has garnered significant attention in recent decades. In this study, we developed a thermoelectric module using earth-abundant elements and evaluated its power conversion performance over a temperature range of 40 to 250 °C. The n-type pillars were fabricated from Al-doped ZnO, while the p-type pillars consisted of a CuS/ZnO alloy. Both types of pillars were sintered in a furnace, and their respective figures of merit were measured up to 250 °C. The module, composed of 45 pairs of these pillars, demonstrated notable power conversion capabilities. Our experimental results highlight a cost-effective approach to manufacturing thermoelectric modules with earth-abundant elements, presenting a viable alternative to conventional methods that rely on expensive materials and complex fabrication processes.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"417-420"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahsan Irshad;Qamrosh Sajjad;Abida Parveen;Mehboob Alam
{"title":"Spectral Shift From Near to Far-Field Radiation in Metallic Nanoparticles","authors":"Ahsan Irshad;Qamrosh Sajjad;Abida Parveen;Mehboob Alam","doi":"10.1109/TNANO.2025.3592825","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3592825","url":null,"abstract":"The interaction between light and metallic nanoparticles, driven by potential applications, requires a comprehensive understanding of the intensity and spectral shift from near-field to far-field radiation. The far-field spectra have received extensive attention, yet significant peak shifts in the near-field are often overlooked by Mie solutions, necessitating full-wave numerical solvers for accurate analysis and thus limiting a deeper understanding of near-field behavior. This work proposes an impedance-based compact solution that harnesses the fundamental relationship of voltage-current and the analogy between a series resonant circuit and the near-field to develop compact models uniquely identifying the fundamental mode near and far-field spectral shifts. The results align closely with Mie solutions in the far-field and full-wave solvers in the near-field, demonstrating a strong agreement highlighting the distance-dependent spectral shift dominating the overall response. The compact, parameter-dependent model offers valuable insights, enabling the exploitation of the distinctive near-field interactions of nanoparticles to design and develop extraordinary solutions.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"407-412"},"PeriodicalIF":2.1,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}