IEEE Transactions on Nanotechnology最新文献

筛选
英文 中文
Hybrid Multi-Level Cell Spin-Orbit Torque Memory for Fast and Robust Memory Operations 用于快速和稳健存储操作的混合多级单元自旋轨道扭矩存储器
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-07-02 DOI: 10.1109/TNANO.2025.3585167
Kon-Woo Kwon;Yeongkyo Seo
{"title":"Hybrid Multi-Level Cell Spin-Orbit Torque Memory for Fast and Robust Memory Operations","authors":"Kon-Woo Kwon;Yeongkyo Seo","doi":"10.1109/TNANO.2025.3585167","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3585167","url":null,"abstract":"This paper proposes a hybrid spintronic multi-level cell (MLC) optimized for fast and reliable memory operations. The proposed MLC employs two magnetic tunnel junctions with distinct magnetization characteristics within a single cell, leveraging their significant differences in critical current requirements to effectively mitigate write-disturb failures. Moreover, the proposed design incorporates a spin-orbit torque-based switching mechanism along with a device multiplexing architecture, which together enable a one-step write operation and an opportunistic one-step read operation. Simulations demonstrate up to a 2× reduction in latency compared to conventional spintronic MLCs, along with a 2× increase in area efficiency over single-level cell designs and a high write-disturb margin of 61<inline-formula><tex-math>$%$</tex-math></inline-formula>.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"363-368"},"PeriodicalIF":2.1,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144634713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Nanofibrous Membranes Containing Carbon Dots Composited With TiO2 Photocatalyst and Their Removal Rate of Methylene Blue Under Visible Light TiO2光催化剂复合碳点纳米纤维膜的制备及可见光下对亚甲基蓝的去除率
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-07-02 DOI: 10.1109/TNANO.2025.3584828
Yu-Hsun Nien;Yu-Ping Wang
{"title":"Preparation of Nanofibrous Membranes Containing Carbon Dots Composited With TiO2 Photocatalyst and Their Removal Rate of Methylene Blue Under Visible Light","authors":"Yu-Hsun Nien;Yu-Ping Wang","doi":"10.1109/TNANO.2025.3584828","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3584828","url":null,"abstract":"As the industrialization is improving by way of science and technology in society, water pollution has become increasingly serious. Non-degradable organic matter exists in wastewater, which causes environmental deterioration. In order to solve this problem, we select titanium dioxide (TiO<sub>2</sub>) as the photocatalyst material with high activity, chemical stability and low cost. However, pure TiO<sub>2</sub> has a large band gap (3.2 eV) and can only be activated under ultraviolet (UV) light. Therefore, TiO<sub>2</sub> has to be modified to fit our requirement. Carbon dots (CDs) have up-conversion and down-conversion photoluminescence and inhibit the recombination of electron-hole pairs, Adding CDs can reduce the band gap width of TiO<sub>2</sub>, and increase the absorption of visible light significantly, thereby improving photocatalytic efficiency. We use citric acid as the carbon source and urea as the nitrogen source to prepare CDs by using the hydrothermal method, and prepare the CDs/TiO<sub>2</sub> composite photocatalyst through the sol-gel method. The CDs/TiO<sub>2</sub> composite photocatalyst shows stable and efficient photocatalytic performance for removal of methylene blue (MB), with a removal rate of 95.34%. In order to reuse the CDs/TiO<sub>2</sub> composite photocatalyst powder, we use electrospinning technology to combine CDs/TiO<sub>2</sub> composite photocatalyst with nylon 6,6 nanofibrous membranes. After three cycle tests, we confirm that it is recyclable and practical, and its removal rate is also increased to 99.39%.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"338-346"},"PeriodicalIF":2.1,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Based Inverse Design of Nanoscale Optical Bandpass Filter for Sub-THz 6G Network 基于深度学习的亚太赫兹6G网络纳米级光带通滤波器反设计
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-07-01 DOI: 10.1109/TNANO.2025.3584854
P. Agilandeswari;G. Thavasi Raja;R. Rajasekar
{"title":"Deep Learning Based Inverse Design of Nanoscale Optical Bandpass Filter for Sub-THz 6G Network","authors":"P. Agilandeswari;G. Thavasi Raja;R. Rajasekar","doi":"10.1109/TNANO.2025.3584854","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3584854","url":null,"abstract":"In this paper, the novel deep learning-based nano scale optical filter is designed with narrow bandwidth for 6G network and Dense Wavelength Division Multiplexing (DWDM) systems. The hybrid Long Short-Term Memory Neural Network (LSTM-NN)-transformer based deep learning algorithm is implemented to accurately predict the structural parameter of the optical bandpass filter. The inverse design approach-based hybrid deep learning model is designed to improve the performance of the optical bandpass filter. The photonic filter performance parameters are numerically analyzed by Finite Difference Time Domain (FDTD) method. The proposed hybrid model is designed with very low mean square error of 5.4207 × 10<sup>−8</sup> and less computation time of 834.81 seconds. The presented photonics platform is designed with narrow bandwidth of 1.12 THz and footprint is very compact as about 134 μm<sup>2</sup>. Therefore, the proposed optical filter is highly suitable for photonic integrated circuits and lightwave communication systems.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"347-355"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Modified Double Ring Resonator With Embedded High Contrast Optical Bragg Grating as an Optical Filter and a Biosensor 嵌入高对比度光栅作为滤光片和生物传感器的改进双环谐振器的设计与分析
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-30 DOI: 10.1109/TNANO.2025.3584047
Aman Shekhar;Sanjoy Mandal
{"title":"Design and Analysis of Modified Double Ring Resonator With Embedded High Contrast Optical Bragg Grating as an Optical Filter and a Biosensor","authors":"Aman Shekhar;Sanjoy Mandal","doi":"10.1109/TNANO.2025.3584047","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3584047","url":null,"abstract":"This paper presents a novel design and performance analysis of a modified double-ring resonator (MDRR) integrated with high contrast optical Bragg grating (HCOBG) structure functioning as an optical filter and a biosensor. The MATLAB environment is used to analyze the configuration’s output, and the finite-difference time-domain (FDTD) numerical approach is employed to model the configuration as a biosensor. The grating-assisted Modified Double Ring Resonator is optimized for precise filtering in optical communication systems and high sensitivity in biosensing applications. Sufficiently large free spectral range (FSR) with high biosensing sensitivity and figure of merit (FOM) of 1057.094 nm per refractive index unit (RIU) and 107.003 RIU<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula> respectively, the proposed configuration demonstrates potential for high-performance optical filtering for dense wavelength division multiplexing (DWDM) systems as well as improved biosensing for critical biomedical applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"330-337"},"PeriodicalIF":2.1,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Challenges in the Fabrication of Vertical Silicon Nanowire Transistors 垂直硅纳米线晶体管制造的最新挑战
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-23 DOI: 10.1109/TNANO.2025.3582023
Cigdem Cakirlar;Jonas Müller;Christoph Beyer;Konstantinos Moustakas;Bruno Neckel Wesling;Giulio Galderisi;Sylvain Pelloquin;Cristell Maneux;Thomas Mikolajick;Guilhem Larrieu;Jens Trommer
{"title":"Recent Challenges in the Fabrication of Vertical Silicon Nanowire Transistors","authors":"Cigdem Cakirlar;Jonas Müller;Christoph Beyer;Konstantinos Moustakas;Bruno Neckel Wesling;Giulio Galderisi;Sylvain Pelloquin;Cristell Maneux;Thomas Mikolajick;Guilhem Larrieu;Jens Trommer","doi":"10.1109/TNANO.2025.3582023","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3582023","url":null,"abstract":"Vertical silicon nanowire transistors are among the most promising device concepts for future low-power electronics due to their gate-all-around nature as well as their 3D stacking potential. In this work we review the current status of transistor fabrication on vertical silicon nanostructures and identify the most important challenges for successful process integration. Channel patterning, source/drain contact formation, gate-deposition and spacer engineering are identified as key steps independent on the actual process integration sequence. We conclude the paper with two emerging device examples and discuss the influence of the processing challenges on the transistor design.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"356-362"},"PeriodicalIF":2.1,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144634629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Modeling and Simulation Investigation of Nanowire Tunnel FET for Potential and Drain Current Evaluation 纳米线隧道场效应管的分析建模与仿真研究
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-20 DOI: 10.1109/TNANO.2025.3581782
Parveen Kumar;Balwinder Raj;Girish Wadhwa
{"title":"Analytical Modeling and Simulation Investigation of Nanowire Tunnel FET for Potential and Drain Current Evaluation","authors":"Parveen Kumar;Balwinder Raj;Girish Wadhwa","doi":"10.1109/TNANO.2025.3581782","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3581782","url":null,"abstract":"An analytical model of nanowire-tunnel field effect transistor (NWTFET) has been developed in this article with a gate-all-around structure and band-to-band tunneling (BTBT) mechanism. The proposed model is effective for operation in all regions such as source, drain, channel and measures accurate potential, transfer characteristics and is immune to short channel effect. The drain current and surface potential have been evaluated with the variation in metal work function, doping concentration, oxide thickness and channel material at different bias conditions (V<sub>DS</sub> and V<sub>GS</sub>). The validation of observed results has been performed through TCAD simulations. The surface potential model is designed by separating the substrate of silicon into three dissimilar areas (I, II, III) and determining the 2-D Poisson’s equation (PE) in other areas. To utilize Poisson’s Equation appropriately at various boundary conditions, a descriptive parabolic approximation strategy is used.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"323-329"},"PeriodicalIF":2.1,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144597741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Photodetection via High Aspect Ratio Core-Shell Nanowire Array 高纵横比核壳纳米线阵列的高效光电探测
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-10 DOI: 10.1109/TNANO.2025.3577930
Vishal Kaushik;Swati Rajput;Ashavani Kumar;Mukesh Kumar
{"title":"Efficient Photodetection via High Aspect Ratio Core-Shell Nanowire Array","authors":"Vishal Kaushik;Swati Rajput;Ashavani Kumar;Mukesh Kumar","doi":"10.1109/TNANO.2025.3577930","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3577930","url":null,"abstract":"Here we propose a Cu<sub>2</sub>O-ZnO-based high-aspect ratio core-shell nanowire (with radial p-n junction) for efficient photodetection via a cost-effective fabrication route. The proposed platform exploits enhanced active depletion area offered by radial p-n junction in high aspect ratio nanowires, along with this excellent transport properties of the device. This results in superior light-matter interaction and better charge collection efficiency. The proposed device demonstrates significant improvement in responsivity via a simple fabrication approach and offers a compact and cost-effective alternative to complex, highly sensitive photodetectors. It can find applications in remote sensing, medical diagnostics barcode readers, and wireless environmental monitoring. Moreover, the enhanced light-matter interaction via the proposed approach can be useful in various other applications such as Solar Cells, Light Emitting Diodes, and Optical Modulation.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"318-322"},"PeriodicalIF":2.1,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue Narrowband Photomultiplication Type Organic Photodetector Using ZnPc as Photon Field Modulation Layer 利用ZnPc作为光子场调制层的蓝色窄带光电倍增型有机光电探测器
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-06 DOI: 10.1109/TNANO.2025.3577501
Sampati Rao Sridhar;Medha Joshi;Brijesh Kumar
{"title":"Blue Narrowband Photomultiplication Type Organic Photodetector Using ZnPc as Photon Field Modulation Layer","authors":"Sampati Rao Sridhar;Medha Joshi;Brijesh Kumar","doi":"10.1109/TNANO.2025.3577501","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3577501","url":null,"abstract":"In this work, a blue narrowband photomultiplication (PM) type organic photodetector (OPD) is fabricated with ZnPc as photon field modulation layer. The photomultiplication in OPD is attributed to electron trap assisted hole injection mechanism. In PM OPD, ZnPc altered the distribution of photogenerated charge carriers within the P3HT:PCBM active layer and results in narrowband detection. This study is the first to demonstrate a narrowband PM OPD with a peak response at 480 nm, using a P3HT:PCBM active layer. The detector demonstrated a rejection ratio (EQE<sub>480 nm</sub>/EQE<sub>570 nm</sub>) of 590, and a full width half maximum (FWHM) of 67 nm with 1000 nm thick ZnPc as photon field modulation layer. As the ZnPc layer thickness is increased from 200 nm to 1500 nm, the FWHM of the detector narrowed from 175 nm to 67 nm. The demonstrated narrowband photodetector with response peak in blue region has diverse applications in communication and imaging fields.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"312-317"},"PeriodicalIF":2.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144367000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni-SiO2 Cell-Assisted Thermally Stable Broadband Metamaterial Emitter Ni-SiO2电池辅助热稳定宽带超材料发射极
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-06-03 DOI: 10.1109/TNANO.2025.3576246
Muhammad Saqlain;Muhammad Abuzar Baqir;Pankaj Kumar Choudhury
{"title":"Ni-SiO2 Cell-Assisted Thermally Stable Broadband Metamaterial Emitter","authors":"Muhammad Saqlain;Muhammad Abuzar Baqir;Pankaj Kumar Choudhury","doi":"10.1109/TNANO.2025.3576246","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3576246","url":null,"abstract":"A thermally stable ultra-broadband metasurface-based emitter comprising square-shaped Ni resonators on Si substrate was investigated. The planar multilayer metamaterial emitter exhibits high emissivity of 94% over a span of 400–8450 nm wavelength. With the optimized structural parameters, the results show the thermal emission efficiency of 93.55% and photothermal conversion efficiency of 90.5% at 900K, which determine strong solar energy absorption of the emitter cavity. However, variations in structural parameters and the angle of incidence leave a minor impact on thermal emissivity. The findings show the developed structure to be of potential in efficient solar energy utilization.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"307-311"},"PeriodicalIF":2.1,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144299063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Intelligent 3D-AFM Scanning Process Based on Online Probe Rotation and Adaptive Speed Strategy 基于在线探针旋转和自适应速度策略的3D-AFM智能扫描过程
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-04-30 DOI: 10.1109/TNANO.2025.3565847
Huang-Chih Chen;Sheng-An Lee;Ting-An Chou;Li-Chen Fu
{"title":"An Intelligent 3D-AFM Scanning Process Based on Online Probe Rotation and Adaptive Speed Strategy","authors":"Huang-Chih Chen;Sheng-An Lee;Ting-An Chou;Li-Chen Fu","doi":"10.1109/TNANO.2025.3565847","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3565847","url":null,"abstract":"Atomic Force Microscope (AFM) has remained one of the most prominent morphology tools for examining the microscopic world. However, the 3D-AFM has several disadvantages. First, the physical AFM tip occupies space and may sometimes obstruct the scanning process, creating distorted results, especially for vertical sidewalls. Additionally, the traditional AFM scanning scheme results in sparser data density along steep surfaces. In this work, to alleviate distortion, the AFM probe is allowed to rotate. Moreover, the scanning speed along the fast axis in a scan line has to be adaptive according to terrain variation. Therefore, we aim to develop and implement an intelligent AFM scanning process assisted by the proposed probe rotation decision (PRD) and adaptive speed decision (ASD) modules, enabling the AFM probe to achieve online rotation and variable scan speed. Moreover, methods for online coarse compensation and offline fine compensation are also presented to accurately eliminate tip shifts caused by probe rotation. Finally, some comparison results will be provided to demonstrate the effectiveness of the proposed intelligent scanning process.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"264-276"},"PeriodicalIF":2.1,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信