{"title":"Deep Learning Based Inverse Design of Nanoscale Optical Bandpass Filter for Sub-THz 6G Network","authors":"P. Agilandeswari;G. Thavasi Raja;R. Rajasekar","doi":"10.1109/TNANO.2025.3584854","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3584854","url":null,"abstract":"In this paper, the novel deep learning-based nano scale optical filter is designed with narrow bandwidth for 6G network and Dense Wavelength Division Multiplexing (DWDM) systems. The hybrid Long Short-Term Memory Neural Network (LSTM-NN)-transformer based deep learning algorithm is implemented to accurately predict the structural parameter of the optical bandpass filter. The inverse design approach-based hybrid deep learning model is designed to improve the performance of the optical bandpass filter. The photonic filter performance parameters are numerically analyzed by Finite Difference Time Domain (FDTD) method. The proposed hybrid model is designed with very low mean square error of 5.4207 × 10<sup>−8</sup> and less computation time of 834.81 seconds. The presented photonics platform is designed with narrow bandwidth of 1.12 THz and footprint is very compact as about 134 μm<sup>2</sup>. Therefore, the proposed optical filter is highly suitable for photonic integrated circuits and lightwave communication systems.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"347-355"},"PeriodicalIF":2.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Analysis of Modified Double Ring Resonator With Embedded High Contrast Optical Bragg Grating as an Optical Filter and a Biosensor","authors":"Aman Shekhar;Sanjoy Mandal","doi":"10.1109/TNANO.2025.3584047","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3584047","url":null,"abstract":"This paper presents a novel design and performance analysis of a modified double-ring resonator (MDRR) integrated with high contrast optical Bragg grating (HCOBG) structure functioning as an optical filter and a biosensor. The MATLAB environment is used to analyze the configuration’s output, and the finite-difference time-domain (FDTD) numerical approach is employed to model the configuration as a biosensor. The grating-assisted Modified Double Ring Resonator is optimized for precise filtering in optical communication systems and high sensitivity in biosensing applications. Sufficiently large free spectral range (FSR) with high biosensing sensitivity and figure of merit (FOM) of 1057.094 nm per refractive index unit (RIU) and 107.003 RIU<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula> respectively, the proposed configuration demonstrates potential for high-performance optical filtering for dense wavelength division multiplexing (DWDM) systems as well as improved biosensing for critical biomedical applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"330-337"},"PeriodicalIF":2.1,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Challenges in the Fabrication of Vertical Silicon Nanowire Transistors","authors":"Cigdem Cakirlar;Jonas Müller;Christoph Beyer;Konstantinos Moustakas;Bruno Neckel Wesling;Giulio Galderisi;Sylvain Pelloquin;Cristell Maneux;Thomas Mikolajick;Guilhem Larrieu;Jens Trommer","doi":"10.1109/TNANO.2025.3582023","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3582023","url":null,"abstract":"Vertical silicon nanowire transistors are among the most promising device concepts for future low-power electronics due to their gate-all-around nature as well as their 3D stacking potential. In this work we review the current status of transistor fabrication on vertical silicon nanostructures and identify the most important challenges for successful process integration. Channel patterning, source/drain contact formation, gate-deposition and spacer engineering are identified as key steps independent on the actual process integration sequence. We conclude the paper with two emerging device examples and discuss the influence of the processing challenges on the transistor design.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"356-362"},"PeriodicalIF":2.1,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144634629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Photodetection via High Aspect Ratio Core-Shell Nanowire Array","authors":"Vishal Kaushik;Swati Rajput;Ashavani Kumar;Mukesh Kumar","doi":"10.1109/TNANO.2025.3577930","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3577930","url":null,"abstract":"Here we propose a Cu<sub>2</sub>O-ZnO-based high-aspect ratio core-shell nanowire (with radial p-n junction) for efficient photodetection via a cost-effective fabrication route. The proposed platform exploits enhanced active depletion area offered by radial p-n junction in high aspect ratio nanowires, along with this excellent transport properties of the device. This results in superior light-matter interaction and better charge collection efficiency. The proposed device demonstrates significant improvement in responsivity via a simple fabrication approach and offers a compact and cost-effective alternative to complex, highly sensitive photodetectors. It can find applications in remote sensing, medical diagnostics barcode readers, and wireless environmental monitoring. Moreover, the enhanced light-matter interaction via the proposed approach can be useful in various other applications such as Solar Cells, Light Emitting Diodes, and Optical Modulation.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"318-322"},"PeriodicalIF":2.1,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huang-Chih Chen;Sheng-An Lee;Ting-An Chou;Li-Chen Fu
{"title":"An Intelligent 3D-AFM Scanning Process Based on Online Probe Rotation and Adaptive Speed Strategy","authors":"Huang-Chih Chen;Sheng-An Lee;Ting-An Chou;Li-Chen Fu","doi":"10.1109/TNANO.2025.3565847","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3565847","url":null,"abstract":"Atomic Force Microscope (AFM) has remained one of the most prominent morphology tools for examining the microscopic world. However, the 3D-AFM has several disadvantages. First, the physical AFM tip occupies space and may sometimes obstruct the scanning process, creating distorted results, especially for vertical sidewalls. Additionally, the traditional AFM scanning scheme results in sparser data density along steep surfaces. In this work, to alleviate distortion, the AFM probe is allowed to rotate. Moreover, the scanning speed along the fast axis in a scan line has to be adaptive according to terrain variation. Therefore, we aim to develop and implement an intelligent AFM scanning process assisted by the proposed probe rotation decision (PRD) and adaptive speed decision (ASD) modules, enabling the AFM probe to achieve online rotation and variable scan speed. Moreover, methods for online coarse compensation and offline fine compensation are also presented to accurately eliminate tip shifts caused by probe rotation. Finally, some comparison results will be provided to demonstrate the effectiveness of the proposed intelligent scanning process.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"264-276"},"PeriodicalIF":2.1,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Room Temperature Negative Differential Resistance in Gate-All-Around Field-Effect Transistors With 1D Active Channels","authors":"Amit Verma;Reza Nekovei;Daryoush Shiri","doi":"10.1109/TNANO.2025.3565276","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3565276","url":null,"abstract":"We report on the presence of a Negative Differential Resistance (NDR) in a Gate-All-Around Field Effect Transistor (GAAFET) with 1D nanowires or nanotubes as the active conducting channel. Here, the drain current is seen to decrease sharply at relatively higher gate voltages. The onset of NDR is tunable with device topology. The NDR mechanism in this work is due to the applied gate voltage, not the drain-source voltage, a feature which promises low-voltage application of this effect. The results are based on a self-consistent ensemble Monte Carlo charge-carrier transport model with an electrostatic solver that solves Gauss's law in integral form.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"260-263"},"PeriodicalIF":2.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Underlay Metal Strip Loaded Doping-Less Heterojunction (GaSb/Si) TFET Biosensor for Autoimmune Disease Detection","authors":"Madhulika Verma;Sachin Agrawal","doi":"10.1109/TNANO.2025.3561947","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3561947","url":null,"abstract":"In human being autoimmune diseases are caused by the immune system's attack on body tissues. Therefore, advanced diagnostic tools for their early and accurate detection is highly needed. This study introduces a new underlay metal strip loaded doping-less heterojunction (GaSb/Si) TFET biosensor (UMS-DL-HJ-TFETB) device with exceptional sensitivity and performance. Key design features include an underlay metal strip for improved tunnelling and the cavities are on the source region to achieve a peak drain current sensitivity of 6.7 × 10<inline-formula><tex-math>$^{10}$</tex-math></inline-formula> at k = 12 and V<inline-formula><tex-math>$_{gs}$</tex-math></inline-formula> = 0.45 V. With a cut-off frequency of 3.27 × 10<inline-formula><tex-math>$^{8}$</tex-math></inline-formula> Hz and a response time of 496 ps, the proposed biosensor exhibits excellent RF performance. The device performance in detecting DNA charge densities ranging from <inline-formula><tex-math>$pm$</tex-math></inline-formula>1 × 10<inline-formula><tex-math>$^{11}$</tex-math></inline-formula> cm<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula> to <inline-formula><tex-math>$pm$</tex-math></inline-formula>1 × 10<inline-formula><tex-math>$^{12}$</tex-math></inline-formula> cm<inline-formula><tex-math>$^{-2}$</tex-math></inline-formula> has also been studied. In addition, five non-uniform distributions which is caused by the steric hindrance effect have been optimized. A comparative analysis is also done for fair evaluation. The simulation results show that the proposed biosensor addresses the limitations of conventional methods, providing high sensitivity, rapid detection and reliable diagnostic accuracy for autoimmune diseases.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"239-248"},"PeriodicalIF":2.1,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143896305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vector-Matrix Multiplier Architecture for In-Memory Computing Applications With RRAM Arrays","authors":"Bipul Boro;Rushik Parmar;Gaurav Trivedi","doi":"10.1109/TNANO.2025.3560912","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3560912","url":null,"abstract":"Artificial Intelligence (AI) has advanced to the stage where modern problems can be transformed into AI problems with computational costs. Increased complexity has exponentially raised computation and inference demands, primarily due to Von Neumann architecture limitations. In-memory computing (IMC) revolutionizes this paradigm by eliminating memory read-write overheads. Notably, the utilization of Resistive Random Access Memory (RRAM) in vector-matrix multiplication (VMM) configurations within IMC architectures has demonstrated substantial performance enhancements. In the proposed work, utilizing Digital-to-Time Converters (DTCs) and Time-to-Digital Converters (TDCs) optimizes hardware resources substantially within in-memory computing (IMC) architectures. Our proposed DTC and TDC blocks exhibit power consumptions of <inline-formula><tex-math>$41 mu text{W}$</tex-math></inline-formula> and <inline-formula><tex-math>$38 mu text{W}$</tex-math></inline-formula> and delays of <inline-formula><tex-math>$896 text{ps}$</tex-math></inline-formula> and <inline-formula><tex-math>$530 text{ps}$</tex-math></inline-formula>. Additionally, we introduce a <inline-formula><tex-math>$4T-1R$</tex-math></inline-formula> structure with Reset Stop Block (RSB) that facilitates 2-bit RRAM reprogramming and entails a latency of <inline-formula><tex-math>$1.07 mu text{s}$</tex-math></inline-formula> and energy/cell of <inline-formula><tex-math>$0.11 text{pJ}$</tex-math></inline-formula>. The overall energy efficiency of Time-Domain VMM (TDVMM) architecture is <inline-formula><tex-math>$866.6 text{Tops/W}$</tex-math></inline-formula>, which is <inline-formula><tex-math>$1.61 times$</tex-math></inline-formula> more efficient than contemporary TDVMMs. Furthermore, our design consistently performs with a cycle-to-cycle variability of 23%, showcasing its tolerance to variations.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"249-259"},"PeriodicalIF":2.1,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Analysis of TreeFET: A Circuit Perspective","authors":"N. Aruna Kumari;Brajesh Kumar Kaushik","doi":"10.1109/TNANO.2025.3560672","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3560672","url":null,"abstract":"In this article, a comprehensive performance analysis of the emerging and novel TreeFET is demonstrated at 3-nm technology node. The TreeFET is realized by combining nanosheet FET (NSFET) and fin-like interbridge (IB) structures. Initially, the TreeFET is compared with traditional NSFET under the same footprint (FP). The ON current (<italic>I</i><sub>ON</sub>) and switching ratio (<italic>I</i><sub>ON</sub>/<italic>I</i><sub>OFF</sub>) enhance with TreeFET by 56% and 35.4% compared to the NSFET with matched OFF current (<italic>I</i><sub>OFF</sub>). Further, the dimensional impact of TreeFET is studied in detail by altering the geometry of IB. On top of that, as the IB height (<italic>H</i><sub>IB</sub>) is a crucial metric for deciding the performance, the impact of <italic>H</i><sub>IB</sub> on analog/RF performance is also studied. Although the parasitic capacitance rises with higher <italic>H</i><sub>IB</sub>, better RF performance is observed with <italic>H</i><sub>IB</sub> of 30 nm compared to 10 nm due to the significant increase in ON current. Further, it is noted that the electrical performance is degraded with the rise in temperature. Moreover, the circuit level demonstration of TreeFET is carried out at both <italic>H</i><sub>IB</sub> of 10 nm and 30 nm for the CMOS inverter and ring oscillator (RO). The CMOS inverter switching current (<italic>I</i><sub>SC</sub>), power-delay product (PDP), and energy-delay product (EDP) are increased by 1.61×, 53%, and 38%, respectively with an increase in <italic>H</i><sub>IB</sub>. However, for 19-stage RO, an improvement of 11.55% in oscillation frequency (<italic>f</i><sub>OSC</sub>) is noticed with <italic>H</i><sub>IB</sub> of 30 nm. Moreover, the PDP and EDP variations are presented for 19-stage RO with variations in <italic>H</i><sub>IB</sub>. The analysis enables a profound understanding of the performance of emerging TreeFET devices at both device and circuit levels.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"231-238"},"PeriodicalIF":2.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143896306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On-chip Non-Blocking 4 × 4 and 8 × 8 Photonic Switches Using MMI-MZI Configuration for Next-Generation Data Center Networks","authors":"Devendra Chack;Gaurav Kumar","doi":"10.1109/TNANO.2025.3558256","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3558256","url":null,"abstract":"The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"216-223"},"PeriodicalIF":2.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}