IEEE Transactions on Nanotechnology最新文献

筛选
英文 中文
Biosynthesized AgNP Modified Glassy Carbon Electrode as a Bacteria Sensor Based on Amperometry and Impedance-Based Detection 生物合成的 AgNP 修饰玻璃碳电极作为基于安培计和阻抗检测的细菌传感器
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-11 DOI: 10.1109/TNANO.2024.3375364
Rhea Patel;Naresh Mandal;Bidhan Pramanick
{"title":"Biosynthesized AgNP Modified Glassy Carbon Electrode as a Bacteria Sensor Based on Amperometry and Impedance-Based Detection","authors":"Rhea Patel;Naresh Mandal;Bidhan Pramanick","doi":"10.1109/TNANO.2024.3375364","DOIUrl":"10.1109/TNANO.2024.3375364","url":null,"abstract":"The most effective methods for detecting bacterial cells at different phases of development take a lot of time, require expert labor, and call for state-of-the-art lab setups, including complex equipment and surroundings. Here, using amperometry and non-faradaic electrochemical impedance spectroscopy (nf-EIS) measurements, we have developed a glassy carbon electrode (GCE) derived from carbon-microelectromechanical systems (C-MEMS) that has been bio-modified to detect the impact of biologically synthesized silver nanoparticles on bacterial cells. The measurement method is more straightforward and accurate because no labeling molecules or redox markers are used. Using a standard bioassay method, the antibacterial properties of the synthesized nanoparticles were established. Amperometry and impedance readings were then used to determine when the concentration of the cells had decreased. The electroanalytical analysis was performed using the chronoamperometry method under optimal conditions. Rapid antibacterial testing at the point-of-need, a significant problem in water quality management, is made possible thanks to these findings.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"257-264"},"PeriodicalIF":2.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variability-Aware Memristive Crossbars With ImageSplit Neural Architecture 采用图像分割神经架构的可变性感知记忆十字杆
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-08 DOI: 10.1109/TNANO.2024.3375125
Aswani Radhakrishnan;Anitha Gopi;Chithra Reghuvaran;Alex James
{"title":"Variability-Aware Memristive Crossbars With ImageSplit Neural Architecture","authors":"Aswani Radhakrishnan;Anitha Gopi;Chithra Reghuvaran;Alex James","doi":"10.1109/TNANO.2024.3375125","DOIUrl":"10.1109/TNANO.2024.3375125","url":null,"abstract":"The errors in the memristive crossbar arrays due to device variations will impact the overall accuracy of neural networks or in-memory systems developed. For ensuring reliable use of memristive crossbar arrays, variability compensation techniques are essential to be part of the neural network design. In this paper, we present an input regulated variability compensation technique for memristive crossbar arrays. In the proposed method, the input image is split into non-overlapping blocks to be processed individually by small sized neural network blocks, which is referred to as imageSplit architecture. The memristive crossbar based Artificial Neural Network (ANN) blocks are used for building the proposed imageSplit. Circuit level analysis and integration is carried out to validate the proposed architecture. We test this approach on different datasets using various deep neural network architectures. The paper considers various device variations including \u0000<inline-formula><tex-math>$R_{OFF}/R_{ON}$</tex-math></inline-formula>\u0000 variations and aging using imageSplit. Along with hardware compensation techniques, algorithmic modifications like pruning and dropouts are also considered for analysis. The results show that splitting the input and independently training the smaller neural networks performs better in terms of output probabilistic values even with the presence of the significant amount of hardware variability.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"274-280"},"PeriodicalIF":2.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10463155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Atomic Scale Quantum Dots in Silicon: An Ultra-Efficient and Robust Subtractor Using Proposed P-Shaped Pattern 在硅中实现原子级量子点:使用 P 形图案的超高效稳健减法器
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-08 DOI: 10.1109/TNANO.2024.3398560
Hadi Rasmi;Mohammad Mosleh;Nima Jafari Navimipour;Mohammad Kheyrandish
{"title":"Towards Atomic Scale Quantum Dots in Silicon: An Ultra-Efficient and Robust Subtractor Using Proposed P-Shaped Pattern","authors":"Hadi Rasmi;Mohammad Mosleh;Nima Jafari Navimipour;Mohammad Kheyrandish","doi":"10.1109/TNANO.2024.3398560","DOIUrl":"10.1109/TNANO.2024.3398560","url":null,"abstract":"Today, Complementary Metal-Oxide-Semiconductor (CMOS) technology faces critical challenges, such as power consumption and current leakage at the nanoscale. Therefore, Atomic Silicon Dangling Bond (ASDB) technology has been proposed as one of the best candidates to replace CMOS technology; due to its high-speed switching and low power consumption. Among the most important issues in ASDB nanotechnology, output stability and robustness against possible faults may be focused. This paper first introduces a novel P-shaped pattern in ASDB, for designing stable and robust primitive logic gates, including AND, NAND, OR, NOR and XOR. Then, two combinational circuits, half-subtractor and full-subtractor, are proposed by the proposed ASDB gates. The simulation results show high output stability as well as adequate robustness, against various defects obtained by the proposed designs; on average, they have improvements of more than 56% and 62%, against DB omission defects and extra cell deposition defects; respectively. Also, the results of the investigations show that the proposed circuits have been improved by 65%, 21% and 2%, in terms of occupied area, energy and occurrence, respectively; compared to the previous works.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"482-489"},"PeriodicalIF":2.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Magnetic Field Sensing With MAGNC-FinFET: A Current Mode Hall Effect Approach 利用 MAGNC-FinFET 增强磁场感应:电流模式霍尔效应方法
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-05 DOI: 10.1109/TNANO.2024.3373035
Ravindra Kumar Maurya;Radhe Gobinda Debnath;Rajesh Saha;Brinda Bhowmick
{"title":"Enhanced Magnetic Field Sensing With MAGNC-FinFET: A Current Mode Hall Effect Approach","authors":"Ravindra Kumar Maurya;Radhe Gobinda Debnath;Rajesh Saha;Brinda Bhowmick","doi":"10.1109/TNANO.2024.3373035","DOIUrl":"10.1109/TNANO.2024.3373035","url":null,"abstract":"This research paper introduces a novel magnetic sensing device named MAGNC-FinFET, which utilizes the conventional NC-FinFET structure as its foundation. This device is capable of measuring vertical magnetic fields through the incorporation of two contacts positioned on either side of the drain. The operating principle relies on the current mode of the Hall effect, leading to the diversion of drain currents at both contact points. By introducing a magnetic field oriented in the positive y-direction and maintaining a bias of 300 μA in the drain current, magnetic measurements are obtained. Furthermore, the influence of the fin width on the device's characteristics and sensitivity has been thoroughly examined. The investigation reveals a proportional increase in both differential currents and relative sensitivity as the fin width parameter is augmented. The paper also presents an extensive review of relevant prior research, highlighting the remarkable qualities of the MAGNC-FinFET as an exceptional magnetic sensor with significantly enhanced sensitivity. This magnetic sensing device based on NC-FinFET shows significant promise as a leading contender for the forthcoming generation of integrated circuits designed for magnetic sensitivity.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"250-256"},"PeriodicalIF":2.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimentally Verified Effective Doping Model for Lactate and Troponin OFET Biosensors Using Machine Learning Algorithm 利用机器学习算法对乳酸盐和肌钙蛋白 OFET 生物传感器的有效掺杂模型进行实验验证。
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-03 DOI: 10.1109/TNANO.2024.3396505
Sameh O. Abdellatif;Hana Mosalam;Salma A. Hussien
{"title":"Experimentally Verified Effective Doping Model for Lactate and Troponin OFET Biosensors Using Machine Learning Algorithm","authors":"Sameh O. Abdellatif;Hana Mosalam;Salma A. Hussien","doi":"10.1109/TNANO.2024.3396505","DOIUrl":"10.1109/TNANO.2024.3396505","url":null,"abstract":"As the interest in human health and customized medicine has grown recently, many researchers' investigations have concentrated on biosensors to develop a cost-effective device for sensing different medical parameters. Among the wide range of organic electronic devices, organic field effect transistor (OFET) has been used in manufacturing flexible biosensors due to their light weight, flexibility, and lower energy usage. In this study, a carrier transport electronic model, verified with experimental data, simulates the biosensing process in two different biosensors: lactate and troponin. Initially, a random forest machine learning model was used to optimize the OFET device with a new figure of merit. Consequently, the sensor's sensitivity and limit of detection were calculated. Two active layers were investigated: polyaniline and pentacene, where the polyaniline showed better sensitivity for lactate biosensor 220 (nM)\u0000<sup>-1</sup>\u0000 and troponin 484 (g/ml)\u0000<sup>-1</sup>\u0000. Moreover, the polyaniline recorded nearly ten times lower power consumption because of its extremely low threshold voltage of -170 mV.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"415-421"},"PeriodicalIF":2.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Electrical Performance and Reliability by Adjustment of the Sequence and Concentration of HfAlOx on IWO Thin-Film Transistors 调整 IWO 薄膜晶体管上 HfAlOx 的顺序和浓度对电气性能和可靠性的影响
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-03-03 DOI: 10.1109/TNANO.2024.3396502
Yi-Xuan Chen;Fu-Jyuan Li;Yi-Lin Wang;Meng-Chien Lee;Hui-Hsuan Li;Yu-Hsien Lin;Chao-Hsin Chien
{"title":"Effect of Electrical Performance and Reliability by Adjustment of the Sequence and Concentration of HfAlOx on IWO Thin-Film Transistors","authors":"Yi-Xuan Chen;Fu-Jyuan Li;Yi-Lin Wang;Meng-Chien Lee;Hui-Hsuan Li;Yu-Hsien Lin;Chao-Hsin Chien","doi":"10.1109/TNANO.2024.3396502","DOIUrl":"10.1109/TNANO.2024.3396502","url":null,"abstract":"We investigated the electrical and material characteristics of atomic layer deposition (ALD) deposition with different sequences and concentrations of HfAlO\u0000<sub>x</sub>\u0000 in Indium-Tungsten-Oxide thin film transistors (IWO-TFTs). Under the 1A10H case, we observed the best electrical properties, with threshold voltage (Vt) closest to 0 V, Ion/Ioff value of approximately 6.7 × 107, subthreshold swing (SS) of 95 mV/dec, smaller interface trap density (Nit) of 5.7 × 1012 cm\u0000<sup>−2</sup>\u0000, and superior immunity to stress-induced degradation. The X-ray photoelectron spectroscopy (XPS) results provided insights into the stability of the interface between the gate dielectric layer and the channel layer. Specifically, the 1A10H conditions exhibited a more stable interface with fewer defects. Furthermore, the choice of HfO\u0000<sub>2</sub>\u0000 as the interface layer material between HfAlO\u0000<sub>x</sub>\u0000 and IWO, compared to Al\u0000<sub>2</sub>\u0000O\u0000<sub>3</sub>\u0000, demonstrated superior performance for different Hf/Al sequence combinations. These findings offer promising directions for enhancing the stability of IWO-TFTs through improvements in the interface between the channel layer and the gate dielectric layer.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"422-426"},"PeriodicalIF":2.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reverse Charge Injection Dual-Gate Synaptic Transistors for Effective Weight Update 反向电荷注入双栅突触晶体管实现有效的重量更新
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-02-29 DOI: 10.1109/TNANO.2024.3371582
Donghyun Ryu;Junsu Yu;Woo Young Choi
{"title":"Reverse Charge Injection Dual-Gate Synaptic Transistors for Effective Weight Update","authors":"Donghyun Ryu;Junsu Yu;Woo Young Choi","doi":"10.1109/TNANO.2024.3371582","DOIUrl":"10.1109/TNANO.2024.3371582","url":null,"abstract":"Reverse charge injection (RCI) dual-gate synaptic transistors and their effective weight update method are proposed. First, the structural features of the proposed RCI dual-gate synaptic transistors are discussed in comparison with our previous work. Second, the weight update efficiency of the proposed synaptic transistors is discussed by analyzing the coupling capacitance components, which determine the electric field distribution across the tunneling and blocking oxides. Consequently, the program voltage and pulse width are reduced by 56.4% and 99.0%, respectively. The power consumption for the weight update operation is lowered by 99.6%. In addition, the anti-back-tunneling effect resulting from the low erase voltage is discussed. Third, the weight update conditions of the proposed synaptic transistors are optimized by adjusting the bottom gate length. Fourth, the proposed synaptic transistors implement 16 stable states (32 states with inhibitory synapses) and a fairly linear weight update by using both the increment step pulse program (ISPP) and increment step pulse erase (ISPE). Finally, the PGM/ERS operation of target cell and inhibit operation of surrounding cells are verified in RCI dual-gate synaptic transistor-based 2 × 2 NOR-type array.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"217-222"},"PeriodicalIF":2.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation of Nanoresonator Based Ultra Narrow-Band Photonic Filters 基于纳米谐振器的超窄带光子滤波器的数值研究
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-02-27 DOI: 10.1109/TNANO.2024.3370717
R. Rajasekar
{"title":"Numerical Investigation of Nanoresonator Based Ultra Narrow-Band Photonic Filters","authors":"R. Rajasekar","doi":"10.1109/TNANO.2024.3370717","DOIUrl":"10.1109/TNANO.2024.3370717","url":null,"abstract":"A novel photonic crystal nanoresonator-based optical bandpass filter is designed with ultra narrow bandwidth, high quality factor, low optical loss and very small compact size. The proposed S-Shaped nanostructure is playing a very significant role on narrow wavelength filtering and effectively localize the incident light signal which leads to the high-quality factor is obtained with 100% transmission. The different light coupling mechanism is used to realize the four dissimilar narrow bandpass filters. These nano-filter performance parameters are numerically investigated by Finite Difference Time Domain Method (FDTD). The nanoresonator coupled waveguides platform is designed with high quality factor as about 3873.70, ultra narrow bandwidth of 60 GHz and 0.13 THz. The presented photonics platform footprint is very compact as about 128.52 μm\u0000<sup>2</sup>\u0000. These enhanced results highly suitable for optical integrated circuits, 5G and 6G optical wireless network.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"188-194"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of a Nanoscale Operational Amplifier Based on a Complementary Carbon Nanotube Field-Effect Transistor by Adjusting Physical Parameters 通过调整物理参数优化基于互补碳纳米管场效应晶体管的纳米级运算放大器
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-02-27 DOI: 10.1109/TNANO.2024.3370098
Hao Ding;Lan Chen;Wentao Huang
{"title":"Optimization of a Nanoscale Operational Amplifier Based on a Complementary Carbon Nanotube Field-Effect Transistor by Adjusting Physical Parameters","authors":"Hao Ding;Lan Chen;Wentao Huang","doi":"10.1109/TNANO.2024.3370098","DOIUrl":"10.1109/TNANO.2024.3370098","url":null,"abstract":"Carbon nanotube field-effect transistors (CNFETs) possess high current density and carrier mobility, enabling high intrinsic gains below the 20-nm technology node. Thus, they demonstrate superior performance compared to traditional silicon analog integrated circuits (ICs). Here, the relevant parameters of a CNFET in analog IC designs were analyzed and simulated, elucidating the influence of physical parameters on the CNFET device. All simulations were performed at technology nodes smaller than 22 nm. To evaluate the performance of a CNFET analog circuit, the g\u0000<sub>m</sub>\u0000/I\u0000<sub>d</sub>\u0000 method for CNFET was employed, and a nanoscale two-stage operational amplifier was designed using complementary CNFET technology with a channel length of 14 nm. In addition, the impact of CNFET's physical parameters on circuit performance were examined. Our results showcased the advantages of CNFET analog circuits over traditional silicon-based analog circuits, as well as the significant influence of CNFET physical parameters on circuit performance. Consequently, this study provides a reference for productive CNFET technologies.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"180-187"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the γ-Radiation Dosimetry Using a Layered Metamaterial Structure Comprising FTO and Blue Glass 利用由 FTO 和蓝玻璃组成的层状超材料结构进行γ 辐射剂量测定
IF 2.4 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2024-02-09 DOI: 10.1109/TNANO.2024.3364254
E. M. Sheta;Azrul Azlan Hamzah;Umi Zulaikha Mohd Azmi;Ishak Mansor;Pankaj Kumar Choudhury
{"title":"On the γ-Radiation Dosimetry Using a Layered Metamaterial Structure Comprising FTO and Blue Glass","authors":"E. M. Sheta;Azrul Azlan Hamzah;Umi Zulaikha Mohd Azmi;Ishak Mansor;Pankaj Kumar Choudhury","doi":"10.1109/TNANO.2024.3364254","DOIUrl":"10.1109/TNANO.2024.3364254","url":null,"abstract":"A layered metamaterial comprising periodic blue glass and FTO mediums was investigated for gamma (γ) radiation dosimetry. The device acts on the principle of absorption of the incidence radiation with sharp resonance absorption peaks which undergo shifts in the presence of γ-radiation. The more the radiation dose is, the more shift happens in the resonance absorption spectrum – the feature that can be exploited in the design of polarization insensitive γ-radiation dosimetry device.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"158-163"},"PeriodicalIF":2.4,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139950622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信