Biosynthesized AgNP Modified Glassy Carbon Electrode as a Bacteria Sensor Based on Amperometry and Impedance-Based Detection

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Rhea Patel;Naresh Mandal;Bidhan Pramanick
{"title":"Biosynthesized AgNP Modified Glassy Carbon Electrode as a Bacteria Sensor Based on Amperometry and Impedance-Based Detection","authors":"Rhea Patel;Naresh Mandal;Bidhan Pramanick","doi":"10.1109/TNANO.2024.3375364","DOIUrl":null,"url":null,"abstract":"The most effective methods for detecting bacterial cells at different phases of development take a lot of time, require expert labor, and call for state-of-the-art lab setups, including complex equipment and surroundings. Here, using amperometry and non-faradaic electrochemical impedance spectroscopy (nf-EIS) measurements, we have developed a glassy carbon electrode (GCE) derived from carbon-microelectromechanical systems (C-MEMS) that has been bio-modified to detect the impact of biologically synthesized silver nanoparticles on bacterial cells. The measurement method is more straightforward and accurate because no labeling molecules or redox markers are used. Using a standard bioassay method, the antibacterial properties of the synthesized nanoparticles were established. Amperometry and impedance readings were then used to determine when the concentration of the cells had decreased. The electroanalytical analysis was performed using the chronoamperometry method under optimal conditions. Rapid antibacterial testing at the point-of-need, a significant problem in water quality management, is made possible thanks to these findings.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"257-264"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10465264/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The most effective methods for detecting bacterial cells at different phases of development take a lot of time, require expert labor, and call for state-of-the-art lab setups, including complex equipment and surroundings. Here, using amperometry and non-faradaic electrochemical impedance spectroscopy (nf-EIS) measurements, we have developed a glassy carbon electrode (GCE) derived from carbon-microelectromechanical systems (C-MEMS) that has been bio-modified to detect the impact of biologically synthesized silver nanoparticles on bacterial cells. The measurement method is more straightforward and accurate because no labeling molecules or redox markers are used. Using a standard bioassay method, the antibacterial properties of the synthesized nanoparticles were established. Amperometry and impedance readings were then used to determine when the concentration of the cells had decreased. The electroanalytical analysis was performed using the chronoamperometry method under optimal conditions. Rapid antibacterial testing at the point-of-need, a significant problem in water quality management, is made possible thanks to these findings.
生物合成的 AgNP 修饰玻璃碳电极作为基于安培计和阻抗检测的细菌传感器
检测处于不同发育阶段的细菌细胞的最有效方法需要花费大量时间,需要专业人员的劳动,并需要最先进的实验室设置,包括复杂的设备和环境。在这里,我们利用安培计和非法拉第电化学阻抗谱(nf-EIS)测量方法,开发了一种源于碳-微机电系统(C-MEMS)的玻璃碳电极(GCE),并对其进行了生物改性,以检测生物合成的银纳米粒子对细菌细胞的影响。由于没有使用标记分子或氧化还原标记,因此测量方法更加直接和准确。利用标准生物测定方法,确定了合成纳米粒子的抗菌特性。然后使用安培计和阻抗读数来确定细胞浓度何时下降。电分析分析是在最佳条件下使用时变法进行的。由于这些发现,水质管理中的一个重要问题--在需求点进行快速抗菌测试成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信