{"title":"采用MMI-MZI配置的片上非阻塞4 × 4和8 × 8光子交换机用于下一代数据中心网络","authors":"Devendra Chack;Gaurav Kumar","doi":"10.1109/TNANO.2025.3558256","DOIUrl":null,"url":null,"abstract":"The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"216-223"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip Non-Blocking 4 × 4 and 8 × 8 Photonic Switches Using MMI-MZI Configuration for Next-Generation Data Center Networks\",\"authors\":\"Devendra Chack;Gaurav Kumar\",\"doi\":\"10.1109/TNANO.2025.3558256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"216-223\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949755/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949755/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On-chip Non-Blocking 4 × 4 and 8 × 8 Photonic Switches Using MMI-MZI Configuration for Next-Generation Data Center Networks
The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.