采用MMI-MZI配置的片上非阻塞4 × 4和8 × 8光子交换机用于下一代数据中心网络

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Devendra Chack;Gaurav Kumar
{"title":"采用MMI-MZI配置的片上非阻塞4 × 4和8 × 8光子交换机用于下一代数据中心网络","authors":"Devendra Chack;Gaurav Kumar","doi":"10.1109/TNANO.2025.3558256","DOIUrl":null,"url":null,"abstract":"The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"216-223"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip Non-Blocking 4 × 4 and 8 × 8 Photonic Switches Using MMI-MZI Configuration for Next-Generation Data Center Networks\",\"authors\":\"Devendra Chack;Gaurav Kumar\",\"doi\":\"10.1109/TNANO.2025.3558256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"216-223\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949755/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949755/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

未来用于数据中心网络的光子集成电路的发展主要依赖于高效、低功耗和紧凑型交换机的发展。本文介绍了采用多模干涉仪(MMI)-马赫-曾德尔干涉仪(MZI)结构设计的无阻塞4 × 4和8 × 8硅光子开关。这些提议的开关由2 × 2 MMI-MZI开关组成,通过利用热光效应改变光信号的相位来实现。在1550 nm处,该2 × 2开关的插入损耗为0.04 dB,串扰< 39.95 dB。同样,c波段的插入损耗< 0.06 dB,串扰< - 33 dB。为了支持复杂的网络拓扑结构,提高网络效率,数据中心网络需要更多的端口交换机。结果表明,在1550 nm处,4 × 4和8 × 8开关的插入损耗分别为0.47 dB和1.02 dB。此外,c波段的插入损耗分别< 0.50 dB和< 1.5 dB。开关在1550 nm处的串扰分别为- 37.59 dB和- 34.67 dB。此外,它们在c波段显示了< - 30 dB的串扰。这表明在端口数量方面有进一步可伸缩性的潜力。开关采用特征模态展开法设计,微加热器采用有限元传热求解器设计。这些优点和优异的性能使该器件在先进的通信系统和光子集成电路中有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-chip Non-Blocking 4 × 4 and 8 × 8 Photonic Switches Using MMI-MZI Configuration for Next-Generation Data Center Networks
The advancement of future photonic integrated circuits for data center networks relies crucially on the development of highly efficient, low-power, and compact switches. This paper presents the design of non-blocking 4 × 4 and 8 × 8 silicon photonics switches intended using Multimode Interferometer (MMI)-Mach-Zehnder interferometer (MZI) structures. These proposed switches consist of 2 × 2 MMI-MZI switches realized by changing the phase of an optical signal using the thermo-optic effect. At 1550 nm, the proposed 2 × 2 switch exhibits an insertion loss of 0.04 dB and crosstalk of < 39.95 dB. Similarly, the C-band showcases an insertion loss of < 0.06 dB and crosstalk of < −33 dB. To support complex network topologies and enhance network efficiency, a data center network necessitates a higher quantity of port switches. The results show that at 1550 nm, the insertion loss for the 4 × 4 and 8 × 8 switches is 0.47 dB and 1.02 dB, respectively. Furthermore, the insertion loss for the C-band is < 0.50 dB and < 1.5 dB, respectively. The switches exhibit crosstalk of −37.59 dB and −34.67 dB at 1550 nm, respectively. Additionally, they demonstrate crosstalk of < −30 dB for the C-band. This suggests the potential for further scalability in terms of port counts. The switches are designed using the eigenmode expansion method, and the micro heater is designed with a finite element heat transfer solver. These advantages and excellent performance make the device a promising candidate for use in advanced communication systems and photonic integrated circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信