Vector-Matrix Multiplier Architecture for In-Memory Computing Applications With RRAM Arrays

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bipul Boro;Rushik Parmar;Gaurav Trivedi
{"title":"Vector-Matrix Multiplier Architecture for In-Memory Computing Applications With RRAM Arrays","authors":"Bipul Boro;Rushik Parmar;Gaurav Trivedi","doi":"10.1109/TNANO.2025.3560912","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) has advanced to the stage where modern problems can be transformed into AI problems with computational costs. Increased complexity has exponentially raised computation and inference demands, primarily due to Von Neumann architecture limitations. In-memory computing (IMC) revolutionizes this paradigm by eliminating memory read-write overheads. Notably, the utilization of Resistive Random Access Memory (RRAM) in vector-matrix multiplication (VMM) configurations within IMC architectures has demonstrated substantial performance enhancements. In the proposed work, utilizing Digital-to-Time Converters (DTCs) and Time-to-Digital Converters (TDCs) optimizes hardware resources substantially within in-memory computing (IMC) architectures. Our proposed DTC and TDC blocks exhibit power consumptions of <inline-formula><tex-math>$41\\ \\mu \\text{W}$</tex-math></inline-formula> and <inline-formula><tex-math>$38\\ \\mu \\text{W}$</tex-math></inline-formula> and delays of <inline-formula><tex-math>$896\\ \\text{ps}$</tex-math></inline-formula> and <inline-formula><tex-math>$530\\ \\text{ps}$</tex-math></inline-formula>. Additionally, we introduce a <inline-formula><tex-math>$4T-1R$</tex-math></inline-formula> structure with Reset Stop Block (RSB) that facilitates 2-bit RRAM reprogramming and entails a latency of <inline-formula><tex-math>$1.07\\ \\mu \\text{s}$</tex-math></inline-formula> and energy/cell of <inline-formula><tex-math>$0.11\\ \\text{pJ}$</tex-math></inline-formula>. The overall energy efficiency of Time-Domain VMM (TDVMM) architecture is <inline-formula><tex-math>$866.6\\ \\text{Tops/W}$</tex-math></inline-formula>, which is <inline-formula><tex-math>$1.61 \\times$</tex-math></inline-formula> more efficient than contemporary TDVMMs. Furthermore, our design consistently performs with a cycle-to-cycle variability of 23%, showcasing its tolerance to variations.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"249-259"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10965489/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) has advanced to the stage where modern problems can be transformed into AI problems with computational costs. Increased complexity has exponentially raised computation and inference demands, primarily due to Von Neumann architecture limitations. In-memory computing (IMC) revolutionizes this paradigm by eliminating memory read-write overheads. Notably, the utilization of Resistive Random Access Memory (RRAM) in vector-matrix multiplication (VMM) configurations within IMC architectures has demonstrated substantial performance enhancements. In the proposed work, utilizing Digital-to-Time Converters (DTCs) and Time-to-Digital Converters (TDCs) optimizes hardware resources substantially within in-memory computing (IMC) architectures. Our proposed DTC and TDC blocks exhibit power consumptions of $41\ \mu \text{W}$ and $38\ \mu \text{W}$ and delays of $896\ \text{ps}$ and $530\ \text{ps}$. Additionally, we introduce a $4T-1R$ structure with Reset Stop Block (RSB) that facilitates 2-bit RRAM reprogramming and entails a latency of $1.07\ \mu \text{s}$ and energy/cell of $0.11\ \text{pJ}$. The overall energy efficiency of Time-Domain VMM (TDVMM) architecture is $866.6\ \text{Tops/W}$, which is $1.61 \times$ more efficient than contemporary TDVMMs. Furthermore, our design consistently performs with a cycle-to-cycle variability of 23%, showcasing its tolerance to variations.
基于RRAM阵列的内存计算应用的向量矩阵乘法器架构
人工智能(AI)已经发展到可以将现代问题转化为具有计算成本的AI问题的阶段。增加的复杂性使计算和推理需求呈指数级增长,这主要是由于冯·诺依曼架构的限制。内存计算(IMC)通过消除内存读写开销彻底改变了这种范式。值得注意的是,在IMC架构中的矢量矩阵乘法(VMM)配置中使用电阻性随机存取存储器(RRAM)已经证明了显著的性能增强。在提出的工作中,利用数字到时间转换器(dtc)和时间到数字转换器(tdc)在内存计算(IMC)架构中大大优化了硬件资源。我们提出的DTC和TDC块的功耗分别为$41\ \mu \text{W}$和$38\ \mu \text{W}$,延迟分别为$896\ \text{ps}$和$530\ \text{ps}$。此外,我们引入了一个带有复位停止块(RSB)的$4T-1R$结构,促进了2位RRAM重编程,并且需要$1.07\ \mu \text{s}$的延迟和$0.11\ \text{pJ}$的能量/单元。时域VMM (TDVMM)架构的整体能源效率为$866.6\ \text{Tops/W}$,比当代TDVMM效率高$1.61 \ $。此外,我们的设计始终以23%的周期变异性执行,展示了其对变化的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信