{"title":"嵌入高对比度光栅作为滤光片和生物传感器的改进双环谐振器的设计与分析","authors":"Aman Shekhar;Sanjoy Mandal","doi":"10.1109/TNANO.2025.3584047","DOIUrl":null,"url":null,"abstract":"This paper presents a novel design and performance analysis of a modified double-ring resonator (MDRR) integrated with high contrast optical Bragg grating (HCOBG) structure functioning as an optical filter and a biosensor. The MATLAB environment is used to analyze the configuration’s output, and the finite-difference time-domain (FDTD) numerical approach is employed to model the configuration as a biosensor. The grating-assisted Modified Double Ring Resonator is optimized for precise filtering in optical communication systems and high sensitivity in biosensing applications. Sufficiently large free spectral range (FSR) with high biosensing sensitivity and figure of merit (FOM) of 1057.094 nm per refractive index unit (RIU) and 107.003 RIU<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula> respectively, the proposed configuration demonstrates potential for high-performance optical filtering for dense wavelength division multiplexing (DWDM) systems as well as improved biosensing for critical biomedical applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"330-337"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Modified Double Ring Resonator With Embedded High Contrast Optical Bragg Grating as an Optical Filter and a Biosensor\",\"authors\":\"Aman Shekhar;Sanjoy Mandal\",\"doi\":\"10.1109/TNANO.2025.3584047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel design and performance analysis of a modified double-ring resonator (MDRR) integrated with high contrast optical Bragg grating (HCOBG) structure functioning as an optical filter and a biosensor. The MATLAB environment is used to analyze the configuration’s output, and the finite-difference time-domain (FDTD) numerical approach is employed to model the configuration as a biosensor. The grating-assisted Modified Double Ring Resonator is optimized for precise filtering in optical communication systems and high sensitivity in biosensing applications. Sufficiently large free spectral range (FSR) with high biosensing sensitivity and figure of merit (FOM) of 1057.094 nm per refractive index unit (RIU) and 107.003 RIU<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula> respectively, the proposed configuration demonstrates potential for high-performance optical filtering for dense wavelength division multiplexing (DWDM) systems as well as improved biosensing for critical biomedical applications.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"330-337\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11058566/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11058566/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Analysis of Modified Double Ring Resonator With Embedded High Contrast Optical Bragg Grating as an Optical Filter and a Biosensor
This paper presents a novel design and performance analysis of a modified double-ring resonator (MDRR) integrated with high contrast optical Bragg grating (HCOBG) structure functioning as an optical filter and a biosensor. The MATLAB environment is used to analyze the configuration’s output, and the finite-difference time-domain (FDTD) numerical approach is employed to model the configuration as a biosensor. The grating-assisted Modified Double Ring Resonator is optimized for precise filtering in optical communication systems and high sensitivity in biosensing applications. Sufficiently large free spectral range (FSR) with high biosensing sensitivity and figure of merit (FOM) of 1057.094 nm per refractive index unit (RIU) and 107.003 RIU$^{-1}$ respectively, the proposed configuration demonstrates potential for high-performance optical filtering for dense wavelength division multiplexing (DWDM) systems as well as improved biosensing for critical biomedical applications.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.