{"title":"Oblique Angle Deposition of Slanted TiO2 Columnar for UV Photodetector Application","authors":"Salam Surjit Singh;Naorem Khelchand Singh;Sapam Bikesh;Biraj Shougaijam","doi":"10.1109/TNANO.2025.3616005","DOIUrl":null,"url":null,"abstract":"With the advancement of optoelectronic technology, a new evaluation of photodetectors’ (PDs’) performance is necessary for next-generation sensing applications. This study uses the e-beam evaporation approach to produce slanted titanium dioxide columnar (TiO<sub>2</sub>-COL) on the Si substrate, with a constant deposition angle of ∼ 61°. The morphology, structural, and optical properties of the fabricated TiO<sub>2</sub>-COL samples were examined. Successful growth of the slanted TiO<sub>2</sub>-COL structure is demonstrated by field emission scanning electron microscopy (FE-SEM). Furthermore, XRD analyses reveal that TiO<sub>2</sub>-COL has an amorphous nature. Optical characterization reveals that the fabricated sample exhibits high absorption intensity in the UV region, for demonstrating a potential UV photodetector application. The TiO<sub>2</sub>-COL based PD that was deposited obliquely displayed I-V curves that demonstrated a distinct photovoltaic mode and an extremely low dark current of a few nanoamperes. Moreover, at ∼ 320 nm, the device exhibits a self-powered UV light response with a responsivity value of around ∼ 1.3 mA/W. In addition, this TiO<sub>2</sub>-COL based photodetector device demonstrates a remarkable detectivity and noise-equivalent-power (NEP) and rise time/fall time of ∼ 4.63 × 10<sup>10</sup> Jones, ∼ 6.06 × 10<sup>−11</sup> W and ∼ 0.305/0.184 sec, respectively, at −0.1 V. Therefore, this novel idea of a slanted TiO<sub>2</sub>-COL structure promotes effective light management and offers a reliable route for creating Low-powered UV PDs.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"489-494"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11185124/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of optoelectronic technology, a new evaluation of photodetectors’ (PDs’) performance is necessary for next-generation sensing applications. This study uses the e-beam evaporation approach to produce slanted titanium dioxide columnar (TiO2-COL) on the Si substrate, with a constant deposition angle of ∼ 61°. The morphology, structural, and optical properties of the fabricated TiO2-COL samples were examined. Successful growth of the slanted TiO2-COL structure is demonstrated by field emission scanning electron microscopy (FE-SEM). Furthermore, XRD analyses reveal that TiO2-COL has an amorphous nature. Optical characterization reveals that the fabricated sample exhibits high absorption intensity in the UV region, for demonstrating a potential UV photodetector application. The TiO2-COL based PD that was deposited obliquely displayed I-V curves that demonstrated a distinct photovoltaic mode and an extremely low dark current of a few nanoamperes. Moreover, at ∼ 320 nm, the device exhibits a self-powered UV light response with a responsivity value of around ∼ 1.3 mA/W. In addition, this TiO2-COL based photodetector device demonstrates a remarkable detectivity and noise-equivalent-power (NEP) and rise time/fall time of ∼ 4.63 × 1010 Jones, ∼ 6.06 × 10−11 W and ∼ 0.305/0.184 sec, respectively, at −0.1 V. Therefore, this novel idea of a slanted TiO2-COL structure promotes effective light management and offers a reliable route for creating Low-powered UV PDs.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.