{"title":"TiO2光催化剂复合碳点纳米纤维膜的制备及可见光下对亚甲基蓝的去除率","authors":"Yu-Hsun Nien;Yu-Ping Wang","doi":"10.1109/TNANO.2025.3584828","DOIUrl":null,"url":null,"abstract":"As the industrialization is improving by way of science and technology in society, water pollution has become increasingly serious. Non-degradable organic matter exists in wastewater, which causes environmental deterioration. In order to solve this problem, we select titanium dioxide (TiO<sub>2</sub>) as the photocatalyst material with high activity, chemical stability and low cost. However, pure TiO<sub>2</sub> has a large band gap (3.2 eV) and can only be activated under ultraviolet (UV) light. Therefore, TiO<sub>2</sub> has to be modified to fit our requirement. Carbon dots (CDs) have up-conversion and down-conversion photoluminescence and inhibit the recombination of electron-hole pairs, Adding CDs can reduce the band gap width of TiO<sub>2</sub>, and increase the absorption of visible light significantly, thereby improving photocatalytic efficiency. We use citric acid as the carbon source and urea as the nitrogen source to prepare CDs by using the hydrothermal method, and prepare the CDs/TiO<sub>2</sub> composite photocatalyst through the sol-gel method. The CDs/TiO<sub>2</sub> composite photocatalyst shows stable and efficient photocatalytic performance for removal of methylene blue (MB), with a removal rate of 95.34%. In order to reuse the CDs/TiO<sub>2</sub> composite photocatalyst powder, we use electrospinning technology to combine CDs/TiO<sub>2</sub> composite photocatalyst with nylon 6,6 nanofibrous membranes. After three cycle tests, we confirm that it is recyclable and practical, and its removal rate is also increased to 99.39%.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"338-346"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Nanofibrous Membranes Containing Carbon Dots Composited With TiO2 Photocatalyst and Their Removal Rate of Methylene Blue Under Visible Light\",\"authors\":\"Yu-Hsun Nien;Yu-Ping Wang\",\"doi\":\"10.1109/TNANO.2025.3584828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the industrialization is improving by way of science and technology in society, water pollution has become increasingly serious. Non-degradable organic matter exists in wastewater, which causes environmental deterioration. In order to solve this problem, we select titanium dioxide (TiO<sub>2</sub>) as the photocatalyst material with high activity, chemical stability and low cost. However, pure TiO<sub>2</sub> has a large band gap (3.2 eV) and can only be activated under ultraviolet (UV) light. Therefore, TiO<sub>2</sub> has to be modified to fit our requirement. Carbon dots (CDs) have up-conversion and down-conversion photoluminescence and inhibit the recombination of electron-hole pairs, Adding CDs can reduce the band gap width of TiO<sub>2</sub>, and increase the absorption of visible light significantly, thereby improving photocatalytic efficiency. We use citric acid as the carbon source and urea as the nitrogen source to prepare CDs by using the hydrothermal method, and prepare the CDs/TiO<sub>2</sub> composite photocatalyst through the sol-gel method. The CDs/TiO<sub>2</sub> composite photocatalyst shows stable and efficient photocatalytic performance for removal of methylene blue (MB), with a removal rate of 95.34%. In order to reuse the CDs/TiO<sub>2</sub> composite photocatalyst powder, we use electrospinning technology to combine CDs/TiO<sub>2</sub> composite photocatalyst with nylon 6,6 nanofibrous membranes. After three cycle tests, we confirm that it is recyclable and practical, and its removal rate is also increased to 99.39%.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"338-346\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11061786/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11061786/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Preparation of Nanofibrous Membranes Containing Carbon Dots Composited With TiO2 Photocatalyst and Their Removal Rate of Methylene Blue Under Visible Light
As the industrialization is improving by way of science and technology in society, water pollution has become increasingly serious. Non-degradable organic matter exists in wastewater, which causes environmental deterioration. In order to solve this problem, we select titanium dioxide (TiO2) as the photocatalyst material with high activity, chemical stability and low cost. However, pure TiO2 has a large band gap (3.2 eV) and can only be activated under ultraviolet (UV) light. Therefore, TiO2 has to be modified to fit our requirement. Carbon dots (CDs) have up-conversion and down-conversion photoluminescence and inhibit the recombination of electron-hole pairs, Adding CDs can reduce the band gap width of TiO2, and increase the absorption of visible light significantly, thereby improving photocatalytic efficiency. We use citric acid as the carbon source and urea as the nitrogen source to prepare CDs by using the hydrothermal method, and prepare the CDs/TiO2 composite photocatalyst through the sol-gel method. The CDs/TiO2 composite photocatalyst shows stable and efficient photocatalytic performance for removal of methylene blue (MB), with a removal rate of 95.34%. In order to reuse the CDs/TiO2 composite photocatalyst powder, we use electrospinning technology to combine CDs/TiO2 composite photocatalyst with nylon 6,6 nanofibrous membranes. After three cycle tests, we confirm that it is recyclable and practical, and its removal rate is also increased to 99.39%.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.