sETNM: Soft-Error-Tolerant Nonvolatile MRAM for Space Applications

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Govind Prasad;Sankalp Tattwadarshi Swain
{"title":"sETNM: Soft-Error-Tolerant Nonvolatile MRAM for Space Applications","authors":"Govind Prasad;Sankalp Tattwadarshi Swain","doi":"10.1109/TNANO.2025.3617228","DOIUrl":null,"url":null,"abstract":"Static random access memory (SRAM) is widely used for its infinite configurability and high performance. However, magnetic RAM (MRAM) is gaining importance in the industry due to its zero leakage, non-volatility, and high radiation reliability. SRAM is susceptible to radiation-induced soft errors, a problem that MRAM mitigates due to its inherent resistance to such errors. Previously, MRAM has been used in various applications, including data storage, but challenges remained in optimizing its design for radiation resilience. In this paper, we have proposed MRAM structure for radiation applications featuring an advanced sense amplifier and precharge circuit. This new MRAM structure provides enhanced radiation hardening with better performance, making it suitable for critical applications in space and other radiation-prone environments.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"495-499"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11189872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11189872/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Static random access memory (SRAM) is widely used for its infinite configurability and high performance. However, magnetic RAM (MRAM) is gaining importance in the industry due to its zero leakage, non-volatility, and high radiation reliability. SRAM is susceptible to radiation-induced soft errors, a problem that MRAM mitigates due to its inherent resistance to such errors. Previously, MRAM has been used in various applications, including data storage, but challenges remained in optimizing its design for radiation resilience. In this paper, we have proposed MRAM structure for radiation applications featuring an advanced sense amplifier and precharge circuit. This new MRAM structure provides enhanced radiation hardening with better performance, making it suitable for critical applications in space and other radiation-prone environments.
用于空间应用的软容错非易失性MRAM
静态随机存取存储器(SRAM)以其无限可配置性和高性能得到了广泛的应用。然而,磁性RAM (MRAM)由于其零泄漏、无挥发性和高辐射可靠性而在行业中越来越重要。SRAM容易受到辐射引起的软错误的影响,MRAM由于其固有的对这种错误的抵抗力而减轻了这个问题。此前,MRAM已用于各种应用,包括数据存储,但在优化其辐射弹性设计方面仍然存在挑战。在本文中,我们提出了具有先进感测放大器和预充电电路的辐射应用MRAM结构。这种新型MRAM结构提供了更好的性能增强的辐射硬化,使其适用于空间和其他辐射易发环境中的关键应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信