Qi Wang, Min Wang, Ai‐Ai Xia, Jin‐Yu Wang, Zi Wang, Tao Xu, De‐Tao Jia, Ming Lu, Wei‐Ming Tan, Jin‐Hong Luo, Yan He
{"title":"Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize","authors":"Qi Wang, Min Wang, Ai‐Ai Xia, Jin‐Yu Wang, Zi Wang, Tao Xu, De‐Tao Jia, Ming Lu, Wei‐Ming Tan, Jin‐Hong Luo, Yan He","doi":"10.1111/pbi.14559","DOIUrl":"https://doi.org/10.1111/pbi.14559","url":null,"abstract":"SummaryThe husk leaf of maize (<jats:italic>Zea mays</jats:italic>) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome‐wide association study for maize husk leaf width and identified a 3‐bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene <jats:italic>ZmNRT2.5</jats:italic>. This polymorphism altered the interaction strength of ZmNRT2.5 with another transporter, ZmNPF5, thereby contributing to variation in husk leaf width. We also isolated loss‐of‐function mutants in <jats:italic>ZmNRT2.5</jats:italic>, which exhibited a substantial decrease in husk leaf width relative to their controls. We demonstrate that ZmNRT2.5 facilitates the transport of nitrate from husk leaves to maize kernels in plants grown under low‐nitrogen conditions, contributing to the accumulation of proteins in maize seeds. Together, our findings uncovered a key gene controlling maize husk leaf width and nitrate transport from husk leaves to kernels. Identification of the <jats:italic>ZmNRT2.5</jats:italic> loci offers direct targets for improving the protein content of maize seeds via molecular‐assisted maize breeding.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"42 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of grains with low glutelin and high eating quality by using dominant allele Lgc-1 in three-line japonica hybrid rice","authors":"Shikai Hu, Lingwei Yang, Jinyang Cai, Guiai Jiao, Hailong Yang, Suozhen Hui, Liang Zhou, Ruijie Cao, Jingxin Wang, Yujuan Chen, Junchao Fang, Zhonghua Sheng, Shaoqing Tang, Peisong Hu","doi":"10.1111/pbi.14502","DOIUrl":"https://doi.org/10.1111/pbi.14502","url":null,"abstract":"<p>Grain proteins constitute the second most storage substance in rice, of which glutelin accounts for 60%–80% of total protein and is easy to be absorbed by humans (Kumamaru <i>et al</i>., <span>1988</span>). However, for patients with kidney disease and diabetes, excessive glutelin intake is not conducive to recovery. The <i>lgc-1</i> mutant is the earliest discovered low-glutelin material, and <i>Lgc-1</i> regulates glutelin content in rice grains (Iida <i>et al</i>., <span>1993</span>; Kusaba <i>et al</i>., <span>2003</span>), which makes this allele have more extensive application prospects in the cultivation of low-glutelin varieties. Rice eating quality (REQ) is influenced by protein content and composition. Studies have shown that with the increase in protein content, the REQ decreases and the palatability becomes worse (Huang <i>et al</i>., <span>2020</span>). Exogenous glutelin and prolamin could affect REQ, whereas knockout of glutelin-related genes could significantly improve the hardness, appearance and REQ. Therefore, the effect of glutelin on REQ may be greater than prolamin and total protein (Furukawa <i>et al</i>., <span>2006</span>; Huang <i>et al</i>., <span>1998</span>; Yang <i>et al</i>., <span>2022</span>). Furthermore, it was found that the expression of genes related to glutelin synthesis had an important effect on protein content and REQ. As the expression of <i>Nhd1</i> increased, the expression of <i>GluA2</i> was inhibited, resulting in the decrease of glutelin content and protein content, thus improving REQ (Zhang <i>et al</i>., <span>2023</span>). These studies indicated that glutelin can significantly affect REQ, however, fewer studies have been done on japonica hybrid rice with high eating quality and low glutelin.</p>\u0000<p>Combining with molecular marker and phenotypic screening, three low-glutelin restorer lines, HL8005, HL8023 and HL8027, were screened by crossing two varieties L9037 and R228 (Figure 1a). L9037 is a low-glutelin variety with the genotype <i>Lgc-1</i> (without restoration gene), and R228 is a wide compatibility restorer line (without genotype <i>Lgc-1</i>). The amplified bands of HL8005, HL8023 and HL8027 were consistent with L9037 by molecular markers (Figure 1c; Figure S1). Compared with L9037, the number of grains per panicle decreased by 4.0% for HL8005, increased by 11.8% and 32.2% for HL8023 and HL8027, respectively, and the 1000-grain weight increased by 4.1% and 9.2% for HL8005 and HL8023, respectively, while the 1000-grain weight of HL8027 decreased by 4.6%, and the seed setting rate were all above 75% (Figure 1b). The heading time of three restorer lines was significantly shorter than L9037, and the single plant yield and population yield of three restorer lines were significantly higher than L9037 (Figure S2). The glutelin content of HL8005, HL8023 and HL8027 were significantly lower than R228, but higher than L9037 (Figure 1d). SDS-PAGE of storage profiles showed that the protein compos","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"36 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eef M. Jonkheer, Dick de Ridder, Theo A. J. van der Lee, Jorn R. de Haan, Lidija Berke, Sandra Smit
{"title":"Exploring intra- and intergenomic variation in haplotype-resolved pangenomes","authors":"Eef M. Jonkheer, Dick de Ridder, Theo A. J. van der Lee, Jorn R. de Haan, Lidija Berke, Sandra Smit","doi":"10.1111/pbi.14545","DOIUrl":"https://doi.org/10.1111/pbi.14545","url":null,"abstract":"With advances in long-read sequencing and assembly techniques, haplotype-resolved (phased) genome assemblies are becoming more common, also in the field of plant genomics. Computational tools to effectively explore these phased genomes, particularly for polyploid genomes, are currently limited. Here we describe a new strategy adopting a pangenome approach. To analyse both intra- and intergenomic variation in phased genome assemblies, we have made the software package PanTools ploidy-aware by updating the pangenome graph representation and adding several novel functionalities to assess synteny and gene retention, profile repeats and calculate synonymous and nonsynonymous mutation rates. Using PanTools, we constructed and analysed a pangenome comprising of one diploid and four tetraploid potato cultivars, and a pangenome of five diploid apple species. Both pangenomes show high intra- and intergenomic allelic diversity in terms of gene absence/presence, SNPs, indels and larger structural variants. Our findings show that the new functionalities and visualizations are useful to discover introgressions and detect likely misassemblies in phased genomes. PanTools is available at https://git.wur.nl/bioinformatics/pantools.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"3 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen Van Gelder, Anuran K. Gayen, Andrew D. Hanson
{"title":"Mirages in continuous directed enzyme evolution: a cautionary case study with plantized bacterial THI4 enzymes","authors":"Kristen Van Gelder, Anuran K. Gayen, Andrew D. Hanson","doi":"10.1111/pbi.14563","DOIUrl":"https://doi.org/10.1111/pbi.14563","url":null,"abstract":"<p>Continuous directed evolution (CDE) improves the characteristics of a target enzyme by hypermutating the enzyme gene <i>in vivo</i>, coupling enzyme activity to growth of a microbial platform, and selecting for growth rate (Molina <i>et al</i>., <span>2022</span>). Directed evolution can be interfaced with genome editing to expand the gene pool available for plant breeding; this powerful combination (DE–GE) has been neatly termed ‘a Green (r)Evolution’ (Gionfriddo <i>et al</i>., <span>2019</span>). THI4 enzymes, which make the thiazole moiety of thiamin, are good testbed targets for plant CDE technology. Plant THI4s are energy-inefficient suicide enzymes that could potentially be replaced by efficient, non-suicide bacterial THI4s to increase biomass yield by as much as 4% (Joshi <i>et al</i>., <span>2021</span>). However, bacterial THI4s are O<sub>2</sub>-sensitive and otherwise ill-adapted to plants (Joshi <i>et al</i>., <span>2021</span>). We therefore previously ran CDE campaigns in the yeast OrthoRep system to ‘plantize’ bacterial THI4s, that is, to improve function in an aerobic, plant-like milieu (Figure 1a) (García-García <i>et al</i>., <span>2022</span>). Two notably successful campaigns were for the THI4 from <i>Mucinivorans hirudinis</i> (MhTHI4); these campaigns culminated when populations acquired single V124A or Y122C mutations that improved growth to near the wild-type rate (Van Gelder <i>et al</i>., <span>2023</span>). Such culmination can be overcome by increasing the selection pressure (Molina <i>et al</i>., <span>2022</span>).</p>\u0000<figure><picture>\u0000<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/5d1a35f3-b3df-4cfa-bd4e-d6fe7c98b2d5/pbi14563-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/5d1a35f3-b3df-4cfa-bd4e-d6fe7c98b2d5/pbi14563-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/bd12af5d-8049-40c0-b660-06ab303db600/pbi14563-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\u0000<div><strong>Figure 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\u0000</div>\u0000<div>OrthoRep campaigns to plantize a bacterial THI4 and their outcomes. (a) The OrthoRep system. The target enzyme (MhTHI4 V124A), plus or minus a poly(A) tail, is encoded on the cytoplasmic p1 plasmid that also carries a LEU2 marker. p1 is hypermutated by a p1-specific, error-prone DNA polymerase (TP-DNAP1_611 or TP-DNAP1_633) encoded on a nuclear plasmid. The BY4741 platform strain carries a <i>thi4</i>Δ deletion to couple growth to the activity of the THI4 on p1. (b) The combinations of expression-reduction regimes with cold turkey (CT) or gradual (G) selection. (c) The non-synonymous (blue) and synonymous (green) mutations that had swept populations by the end of campaigns. When populations failed to grow early in campaigns, surviving populations were split into subpopulations (A, B, C) and prop","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SlVQ15 recruits SlWRKY30IIc to link with jasmonate pathway in regulating tomato defence against root-knot nematodes.","authors":"Huang Huang, Xuechun Ma, Lulu Sun, Yingying Wang, Jilin Ma, Yihan Hong, Mingjie Zhao, Wenchao Zhao, Rui Yang, Susheng Song, Shaohui Wang","doi":"10.1111/pbi.14493","DOIUrl":"10.1111/pbi.14493","url":null,"abstract":"<p><p>Tomato is one of the most economically important vegetable crops in the world and has been seriously affected by the devastating agricultural pest root-knot nematodes (RKNs). Current understanding of tomato resistance to RKNs is quite limited. VQ motif-containing family proteins are plant-specific regulators; however, whether and how tomato VQs regulate resistance to RKNs is unknown. Here, we found that SlVQ15 recruited SlWRKY30IIc to coordinately control tomato defence against the RKN Meloidogyne incognita without affecting plant growth and productivity. The jasmonate (JA)-ZIM domain (JAZ) repressors of the phytohormone JAs signalling associated and interfered with the interaction of SlVQ15 and SlWRKY30IIc. In turn, SlWRKY30IIc bound to SlJAZs promoters and cooperated with SlVQ15 to repress their expression, whereas this inhibitory effect was antagonized by SlJAZ5, forming a feedback regulatory mechanism. Moreover, SlWRKY30IIc expression was directly regulated by SlMYC2, a SlJAZ-interacting negative regulator of resistance to RKNs. In conclusion, our findings revealed that a regulatory circuit of SlVQ15-SlWRKY30IIc and the JA pathway fine-tunes tomato defence against the RKN M. incognita, and provided candidate genes and clues with great potential for crop improvement.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"235-249"},"PeriodicalIF":10.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanhua Zhang, Han Zheng, Xiao Wang, Shuxin Han, Wei Liu, Chenglong Sun, Qiongzheng Hu, Chunxia Ma
{"title":"Flexible substrate-based mass spectrometry platform for in situ non-destructive molecular imaging of living plants.","authors":"Guanhua Zhang, Han Zheng, Xiao Wang, Shuxin Han, Wei Liu, Chenglong Sun, Qiongzheng Hu, Chunxia Ma","doi":"10.1111/pbi.14482","DOIUrl":"10.1111/pbi.14482","url":null,"abstract":"<p><p>Monitoring and localizing molecules on living plants is critical for understanding their growth, development and disease. However, current techniques for molecular imaging of living plants often lack spatial information or require tedious pre-labelling. Here, we proposed a novel molecular imaging platform that combines sliver nanowire-doped Ti<sub>3</sub>C<sub>2</sub> MXene (Ag NWs@MXene) flexible film substrate with laser desorption/ionization mass spectrometry imaging (AMF-LDI-MSI) to study the spatial distribution of biomolecules on the surface of living plants. This platform overcomes the MSI challenges posed by difficult-to-slice plant tissues (e.g., tough or water-rich roots and fragile flowers) and enables precisely transfer and visualize the molecule. Comparisons of the measurement results to those from matrix-assisted LDI-MSI (MALDI-MSI) technology demonstrate the accuracy and reliability of the platform. Biocompatibility evaluations indicated that the platform without observable adverse effects on the health of living plants. The distribution of growth and disease-associated signalling molecules, such as choline, organic acids and carbohydrates, can be in situ non-destructively detected on the surfaces of living plants, which is important for tracking the health of plants and their diseased areas. AMF-LDI-MSI platform can serve as a promising tool for label-free, in situ and non-destructive monitoring of functional biomolecules and plant growth from a spatial perspective.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"97-111"},"PeriodicalIF":10.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Balaji Mani, Inderjit Kaur, Yashika Dhingra, Vidisha Saxena, G K Krishna, Rahul Kumar, Viswanathan Chinnusamy, Manu Agarwal, Surekha Katiyar-Agarwal
{"title":"Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice.","authors":"Balaji Mani, Inderjit Kaur, Yashika Dhingra, Vidisha Saxena, G K Krishna, Rahul Kumar, Viswanathan Chinnusamy, Manu Agarwal, Surekha Katiyar-Agarwal","doi":"10.1111/pbi.14476","DOIUrl":"10.1111/pbi.14476","url":null,"abstract":"<p><p>Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored. We focused on OsTET5, which is differentially expressed under various abiotic stresses and localizes to both plasma membrane and endoplasmic reticulum. Using overexpression and underexpression transgenic lines we demonstrate that OsTET5 contributes to salinity and drought stress tolerance in rice. OsTET5 can interact with itself in yeast, suggesting homomer formation. Immunoblotting of native PAGE of microsomal fraction enriched from OsTET5-Myc transgenic rice lines revealed multimeric complexes containing OsTET5, suggesting the potential formation of TEM complexes. Transcriptome analysis, coupled with quantitative PCR-based validation, of OsTET5-altered transgenic lines unveiled the differential expression patterns of several stress-responsive genes, as well as those coding for transporters under salt stress. Notably, OsTET5 plays a crucial role in maintaining the ionic equilibrium during salinity stress, particularly by preserving an elevated potassium-to-sodium (K<sup>+</sup>/Na<sup>+</sup>) ratio. OsTET5 also regulates reactive oxygen species homeostasis, primarily by modulating the gene expression and activities of antioxidant pathway enzymes and proline accumulation. Our comprehensive investigation underscores the multifaceted role of OsTET5 in rice, accentuating its significance in developmental processes and abiotic stress tolerance. These findings open new avenues for potential strategies aimed at enhancing stress resilience and making valuable contributions to global food security.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"51-71"},"PeriodicalIF":10.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez
{"title":"CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation.","authors":"Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez","doi":"10.1111/pbi.14485","DOIUrl":"10.1111/pbi.14485","url":null,"abstract":"<p><p>The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO<sub>4</sub>), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO<sub>4</sub> application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"141-155"},"PeriodicalIF":10.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiwei Ma, Shichang Xu, Huan Tao, Yunxia Huang, Changqing Feng, Guanpeng Huang, Shoukai Lin, Yiqiong Sun, Xuan Chen, Manegdebwaoga Arthur Fabrice Kabore, Samuel Tareke Woldegiorgis, Yufang Ai, Lina Zhang, Wei Liu, Huaqin He
{"title":"OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance.","authors":"Shiwei Ma, Shichang Xu, Huan Tao, Yunxia Huang, Changqing Feng, Guanpeng Huang, Shoukai Lin, Yiqiong Sun, Xuan Chen, Manegdebwaoga Arthur Fabrice Kabore, Samuel Tareke Woldegiorgis, Yufang Ai, Lina Zhang, Wei Liu, Huaqin He","doi":"10.1111/pbi.14494","DOIUrl":"10.1111/pbi.14494","url":null,"abstract":"<p><p>It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H<sub>2</sub>O<sub>2</sub>, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"250-267"},"PeriodicalIF":10.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pawel Mateusz Mordaka, Kitty Clouston, Aleix Gorchs‐Rovira, Catherine Sutherland, Daniel Qingyang Zhang, Katrin Geisler, Payam Mehrshahi, Alison Gail Smith
{"title":"Regulation of nucleus‐encoded trans‐acting factors allows orthogonal fine‐tuning of multiple transgenes in the chloroplast of Chlamydomonas reinhardtii","authors":"Pawel Mateusz Mordaka, Kitty Clouston, Aleix Gorchs‐Rovira, Catherine Sutherland, Daniel Qingyang Zhang, Katrin Geisler, Payam Mehrshahi, Alison Gail Smith","doi":"10.1111/pbi.14557","DOIUrl":"https://doi.org/10.1111/pbi.14557","url":null,"abstract":"SummaryThe green microalga <jats:italic>Chlamydomonas reinhardtii</jats:italic> is a promising host organism for the production of valuable compounds. Engineering the <jats:italic>Chlamydomonas</jats:italic> chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability. However, complex gene regulation and a lack of tight regulatory elements make this a challenge in the <jats:italic>Chlamydomonas</jats:italic> chloroplast. In this work, we develop two synthetic tuneable systems to control the expression of genes on the chloroplast genome, taking advantage of the properties of the vitamin B<jats:sub>12</jats:sub>‐responsive <jats:italic>METE</jats:italic> promoter and a modified thiamine (vitamin B<jats:sub>1</jats:sub>) riboswitch, along with nucleus‐encoded chloroplast‐targeted regulatory proteins NAC2 and MRL1. We demonstrate the capacity of these systems for robust, fine‐tuned control of several chloroplast transgenes, by addition of nanomolar levels of vitamins. The two systems have been combined in a single strain engineered to avoid effects on photosynthesis and are orthogonal to each other. They were then used to manipulate the production of an industrially relevant diterpenoid, casbene, by introducing and tuning expression of the coding sequence for casbene synthase, as well as regulating the metabolite flux towards casbene precursors, highlighting the utility of these systems for informing metabolic engineering approaches.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"90 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}