Archive of Applied Mechanics最新文献

筛选
英文 中文
Influence of CNTs distributions on three-dimensional vibration of sandwich plates with functionally-graded face sheets
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-23 DOI: 10.1007/s00419-024-02743-x
Yushan Xiao, Senlin Zhang, Zhen Wu, Jie Zhou, Zhengliang Liu, Xiaohui Ren
{"title":"Influence of CNTs distributions on three-dimensional vibration of sandwich plates with functionally-graded face sheets","authors":"Yushan Xiao,&nbsp;Senlin Zhang,&nbsp;Zhen Wu,&nbsp;Jie Zhou,&nbsp;Zhengliang Liu,&nbsp;Xiaohui Ren","doi":"10.1007/s00419-024-02743-x","DOIUrl":"10.1007/s00419-024-02743-x","url":null,"abstract":"<div><p>For a thick sandwich plate, transverse stretching vibration and in-plane vibration might occur before bending vibration in practical applications, which may threaten the dynamic safety of composite structures. Therefore, this work attempts to improve the in-plane and transverse stretching stiffness of sandwich structures by using carbon nanotubes (CNTs) to reinforce face sheets. To this end, it is necessary to understand well the influence of CNTs distributions on the three-dimensional (3D) vibration of functionally graded sandwich plates. Therefore, an extended global–local higher-order model will be proposed to accurately predict 3D vibration behaviors of sandwich structures reinforced by the CNTs, as the existing equivalent single-layer models will encounter difficulties in accurately analyzing such issues. Based on the proposed model, analytical solutions and finite element formulation have been presented to study the dynamic behaviors of sandwich plates with reinforcement of the CNTs, which have been verified by 3D elasticity solutions and three-dimensional finite element results. Moreover, the influence of the CNTs distributions and volume fractions on the vibration behaviors of sandwich plates has been investigated. Finally, by selecting appropriate profiles of the CNTs through the thickness, the in-plane and transverse stretching stiffness of sandwich structures can be significantly improved.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symplectic superposition solution for the buckling problem of orthotropic rectangular plates with four clamped edges
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-23 DOI: 10.1007/s00419-024-02724-0
Mengmeng Zhang, Eburilitu Bai, Jinglong Wang
{"title":"Symplectic superposition solution for the buckling problem of orthotropic rectangular plates with four clamped edges","authors":"Mengmeng Zhang,&nbsp;Eburilitu Bai,&nbsp;Jinglong Wang","doi":"10.1007/s00419-024-02724-0","DOIUrl":"10.1007/s00419-024-02724-0","url":null,"abstract":"<div><p>The main objective of this study is to uniformly solve the buckling problem of fully clamped (CCCC) orthotropic/isotropic rectangular plates with different thicknesses. The analysis uses the symplectic superposition method. This method describes the buckling problem of orthotropic rectangular moderately thick plates (RMTPs) in the Hamiltonian system for treatment in the symplectic space. First, the governing equations of RMTPs are represented by Hamiltonian canonical equations. Then, the original buckling problem of a CCCC rectangular moderately thick plate (RMTP) is divided into two sub-buckling problems. The variable separation method in the Hamiltonian system is used to calculate the general solutions of these two sub-buckling problems. The symplectic superposition solution of the original buckling problem is obtained by superimposing the general solutions of the two sub-buckling problems. Finally, the analysis results of the buckling load and modal shape of orthotropic rectangular plates under various thicknesses and aspect ratios are presented in numerical examples.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-18 DOI: 10.1007/s00419-024-02719-x
Chenlin Li, Liangcheng Zheng, Tianhu He
{"title":"Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids","authors":"Chenlin Li,&nbsp;Liangcheng Zheng,&nbsp;Tianhu He","doi":"10.1007/s00419-024-02719-x","DOIUrl":"10.1007/s00419-024-02719-x","url":null,"abstract":"<div><p>Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investigating the constitutive modeling and transient dynamic responses analysis of the porous-thermo-elastic coupling. Although the fractional temperature rate-dependent porous-thermo-elasticity theories have been historically proposed, the theoretical formulations still adopt the classical fractional derivatives with singular kernels, and the inherent strain relaxation effect and the associated memory dependency are not considered yet in the ultrafast heating condition. To compensate for such deficiency, the present work aims to establish a fractional-order rate-dependent porous-thermo-elasticity model based on the new fractional derivatives with the non-singular kernels (i.e., Caputo–Fabrizio, Atangana–Baleanu, and tempered Caputo fractional derivatives). With the aids of the extended thermodynamic principles, the new constitutive and governing equations are obtained. The proposed theoretical model is applied to investigate the 1D transient dynamic response analysis of magnesium-based porous half-space with voids by applying the Laplace transformation approach. The influences of the new fractional derivatives on the wave propagations and structural transient dynamic responses are evaluated and discussed.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Series solutions for free in-plane vibration of composite plates with arbitrary shape
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-17 DOI: 10.1007/s00419-024-02740-0
Qiuhong Li, Yuyu Song, Joey Sanchez, Zunbing Sheng, Zhongxian Wang
{"title":"Series solutions for free in-plane vibration of composite plates with arbitrary shape","authors":"Qiuhong Li,&nbsp;Yuyu Song,&nbsp;Joey Sanchez,&nbsp;Zunbing Sheng,&nbsp;Zhongxian Wang","doi":"10.1007/s00419-024-02740-0","DOIUrl":"10.1007/s00419-024-02740-0","url":null,"abstract":"<div><p>In this paper, we present a series solution for free in-plane vibration of composite plates with arbitrary shape by using the domain segmentation integral method and derive the tangential and normal vibration displacement equations for the plate boundaries. The solution presented is widely applicable to the analysis of free in-plane vibration of plates; it can accurately and effectively solve the in-plane free vibration problem of arbitrarily shaped non-homogeneous orthotropic plates of variable thickness, complex geometry and variable material properties with respect to in-plane coordinate parameters. To verify the effectiveness, accuracy and applicability of the proposed solution, we perform a computational analysis of different orthogonalization intervals, weight functions, penalty stiffness and the truncation number of orthogonal polynomials. Additionally, the effects of the parameters of thickness and nonhomogeneity on the in-plane vibration characteristics of plate are studied. As a result, we present a new series of natural frequencies and mode shapes for arbitrarily shaped non-homogeneous orthotropic plates of variable thickness.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling and stability analysis of the permanent magnetic bearing-rotor system under base excitation
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-17 DOI: 10.1007/s00419-024-02741-z
Jian Zhou, Ziqiang Fang, Siyu He, Qiang Zhang
{"title":"Modelling and stability analysis of the permanent magnetic bearing-rotor system under base excitation","authors":"Jian Zhou,&nbsp;Ziqiang Fang,&nbsp;Siyu He,&nbsp;Qiang Zhang","doi":"10.1007/s00419-024-02741-z","DOIUrl":"10.1007/s00419-024-02741-z","url":null,"abstract":"<div><p>Permanent magnetic bearings (PMBs) hold great potential for various applications such as artificial heart pumps, space equipment, and flywheels. This is due to their notable advantages, including the absence of mechanical contact, no friction, and no control system requirements. However, in many practical scenarios involving PMBs, the bearing installation base is often subject to external excitation, which can interfere with its stability. Currently, the impact of base excitation on the PMB-rotor system and methods for enhancing the stability of the PMB-rotor system under base excitation remain subjects of investigation. Hence, this study focuses on conducting stability analysis of the PMB-rotor system under the influence of base excitation. Firstly, the theoretical model of PMB based on the Halbach array is established, and then the system dynamics model of PMB-rotor under base excitation is established by using the second Lagrange equation. Finally, according to the established dynamic model, the effects of base excitation parameters, structural parameters, and external damping on the stability of the PMB-rotor system under base excitation are analysed through the root locus method. The research results presented in this study provide a theoretical reference for further engineering applications of PMBs.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tempered fractional thermal conduction model for magnetoelastic solids with spherical holes under time-dependent laser pulse heating 带球形孔的磁弹性固体在随时间变化的激光脉冲加热下的钢化分数热传导模型
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-16 DOI: 10.1007/s00419-024-02739-7
Ahmed E. Abouelregal, Yazeed Alhassan, Salman S. Alsaeed, Mohamed E. Elzayady
{"title":"Tempered fractional thermal conduction model for magnetoelastic solids with spherical holes under time-dependent laser pulse heating","authors":"Ahmed E. Abouelregal,&nbsp;Yazeed Alhassan,&nbsp;Salman S. Alsaeed,&nbsp;Mohamed E. Elzayady","doi":"10.1007/s00419-024-02739-7","DOIUrl":"10.1007/s00419-024-02739-7","url":null,"abstract":"<div><p>This paper presents a modified tempered fractional thermal conductivity model aimed at enhancing the analysis of thermal behavior in magnetic thermoelastic solids, particularly in response to time-dependent laser pulse heating. Current literature lacks comprehensive approaches that effectively account for the complex interactions of thermal, mechanical, and magnetic fields within such materials. This gap is critical, as understanding these interactions is essential for optimizing the performance and reliability of advanced materials in engineering applications. Our study addresses this need by introducing a fractional model that employs modified tempered Caputo fractional derivatives in conjunction with a single-parameter Mittag–Leffler function. This innovative adjustment incorporates a parameter specifically designed to capture memory effects, resulting in a more accurate representation of the intricate thermal dynamics at play. We solved the governing equations directly using the Laplace transform method, providing exact formulas for displacement, temperature, and thermal stresses in copper. The graphical representations included in the study illustrate the material's deformation and the development of thermal stresses under thermal loading conditions. The findings demonstrate that the introduction of the memory effect parameter significantly enhances the thermoelastic model's ability to characterize the behavior of materials and structures subjected to thermal loads, thereby contributing valuable insights to the field of magnetic thermoelasticity.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bragg resonance in a two-layer fluid with the inclusion of current and tension at both surface and interface 双层流体中的布拉格共振,表面和界面均包含电流和张力
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-14 DOI: 10.1007/s00419-024-02737-9
Akshita Aggarwal, S. K. Mohanty, S. C. Martha
{"title":"Bragg resonance in a two-layer fluid with the inclusion of current and tension at both surface and interface","authors":"Akshita Aggarwal,&nbsp;S. K. Mohanty,&nbsp;S. C. Martha","doi":"10.1007/s00419-024-02737-9","DOIUrl":"10.1007/s00419-024-02737-9","url":null,"abstract":"<div><p>In this study, the scattering of water waves by an undulating bottom in a two-layer fluid with current, surface tension, and interfacial tension is investigated. The perturbation technique followed by the Fourier transform technique are applied to solve the coupled boundary value problem. A Bragg resonance arises between the surface waves and the bottom ripples, which is associated with the reflection of incident wave energy. Hence, the Bragg coefficients namely, Bragg reflection and transmission coefficients, and associated velocity potentials are analysed which are obtained in integral forms. In order to clearly understand the efficacy of the present study, a certain type of undulating bottom, known as sinusoidal bottom undulation, has been examined. It has been shown that when the combined effects of surface tension, interfacial tension, and current are taken into account, the wave reflection is minimal. Moreover, a shift in the Bragg resonant frequency is seen with a change in current speed. In addition, interfacial tension influences both surface and interfacial waves, whereas surface tension primarily impacts surface waves. The results obtained here are expected to be qualitatively helpful in tackling problems of flexural gravity waves in two-layer fluid in the presence of current.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An enhanced finite element model for static bending analysis of functionally graded plates with power-law, exponential, and sigmoid material gradients
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-12 DOI: 10.1007/s00419-024-02727-x
Mohamed-Ouejdi Belarbi, Soufiane Benounas, Sattar Jedari Salami, Abdelhak Khechai, Ahmed-Amine Daikh, Mohammed Sid Ahmed Houari, Smain Bezzina
{"title":"An enhanced finite element model for static bending analysis of functionally graded plates with power-law, exponential, and sigmoid material gradients","authors":"Mohamed-Ouejdi Belarbi,&nbsp;Soufiane Benounas,&nbsp;Sattar Jedari Salami,&nbsp;Abdelhak Khechai,&nbsp;Ahmed-Amine Daikh,&nbsp;Mohammed Sid Ahmed Houari,&nbsp;Smain Bezzina","doi":"10.1007/s00419-024-02727-x","DOIUrl":"10.1007/s00419-024-02727-x","url":null,"abstract":"<div><p>This study presents a finite element model formulated to analyze accurately the bending behavior of functionally graded (FG) plates, employing an improved first-order shear deformation theory (FSDT). In contrast to the conventional Mindlin–Reissner theory, our enhanced FSDT incorporates a parabolic shear strain distribution, providing a more realistic depiction of shear strain throughout the plate’s thickness. Material properties of the FG plates are modeled to undergo continuous variation through the thickness, utilizing power law, exponential, and sigmoid distributions. The investigation focuses on assessing the impact of material composition and geometric parameters under both sinusoidal and uniformly distributed loads, considering various boundary conditions. Comparative analyses with previously published literature underscore the precision and simplicity of our model. The obtained results demonstrate strong agreement with solutions derived from other high-order theories, affirming the accuracy of our proposed model. This research contributes valuable insights into the bending behavior of FG plates and reinforces the reliability of the developed finite element model.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic analysis of liquid-filled clamp-pipe systems based on the spectral element method 基于谱元法的充液钳管系统动态分析
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-10 DOI: 10.1007/s00419-024-02723-1
Zhonghan Sun, Ruyu Yu, Xin Wang, Xufang Zhang
{"title":"Dynamic analysis of liquid-filled clamp-pipe systems based on the spectral element method","authors":"Zhonghan Sun,&nbsp;Ruyu Yu,&nbsp;Xin Wang,&nbsp;Xufang Zhang","doi":"10.1007/s00419-024-02723-1","DOIUrl":"10.1007/s00419-024-02723-1","url":null,"abstract":"<div><p>This paper presents an effective approach for dynamic analysis of liquid-filled clamp pipe (LFCP) systems based on the spectral element method (SEM). In this regard, six stiffness components are used to represent the elastic supporting effect of a clamp on the pipe structure, and analytical parameters are derived to realize the Rayleigh damping model in the SEM. This determines an SEM-based approach for dynamic analysis of the LFCP system. Numerical verification of the SEM is implemented for natural frequency analysis of the LFCP in conjunction with the straight, the L-shape, and parallel pipe systems. Compared to the finite-element or the transfer-matrix method in the literature, simulation results have confirmed the high accuracy and efficiency of utilizing the SEM for numerical modelling of the LFCP system. Various realizations of the pipe diameter, the fluid density and pressure, and the clamp coefficients are also considered to investigate their combined effects on structural characteristics. It has confirmed that the SEM based approach provides an effective routine for dynamic analysis of the LFCP system.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contact mechanics of functionally graded orthotropic layer under normal traction and gravity: an analytical perspective
IF 2.2 3区 工程技术
Archive of Applied Mechanics Pub Date : 2024-12-09 DOI: 10.1007/s00419-024-02733-z
Erdal Öner, Ahmed Wasfi Hasan Al-Qado
{"title":"Contact mechanics of functionally graded orthotropic layer under normal traction and gravity: an analytical perspective","authors":"Erdal Öner,&nbsp;Ahmed Wasfi Hasan Al-Qado","doi":"10.1007/s00419-024-02733-z","DOIUrl":"10.1007/s00419-024-02733-z","url":null,"abstract":"<div><p>Contact mechanics is a complex and advanced field of engineering, with continuous research dedicated to modeling and examining contact problems in multilayered and multibody systems. Given that fatigue and fracture failures often result from contact loads, precise determination of subsurface stresses is crucial for the design of mechanical components. This study provides an exact analytical solution for the frictionless indentation of a functionally graded (FG) orthotropic layer by a rigid cylindrical punch. The FG orthotropic layer, which rests on a rigid, non-adhesive substrate, is treated as a nonhomogeneous medium with an orthotropic stress–strain relationship. Part of its top surface experiences normal tractions, while the rest remains traction-free. The analysis also incorporates the gravitational force affecting the FG orthotropic layer. Five distinct real orthotropic materials are used, each with individually graded stiffness constants in their principal directions, to define the FG orthotropic behavior of the material. The governing equations are formulated using the singular integral equation method and transformed into algebraic systems via the Gauss–Chebyshev integration technique. A comprehensive parametric study examines how variations in dimensionless punch radius, compressive force, inhomogeneity parameters, and body force influence contact widths, contact pressures, normal and shear stresses, critical load factor, and the initial point of interface separation.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信