Chaoxian Jia , Yuezhong Mao , Jianxi Ying , Xiaofan Guo , Shiyi Tian , Weibo Zheng , Tao Zhang , Yufen Zhao , Kun Ding , Yan Liu
{"title":"An electronic tongue system with automatic sample mixing function for long-term in-situ monitoring of chemical reactions","authors":"Chaoxian Jia , Yuezhong Mao , Jianxi Ying , Xiaofan Guo , Shiyi Tian , Weibo Zheng , Tao Zhang , Yufen Zhao , Kun Ding , Yan Liu","doi":"10.1016/j.elecom.2024.107840","DOIUrl":"10.1016/j.elecom.2024.107840","url":null,"abstract":"<div><div>As technology advanced, the demand for automation and in-situ monitoring of chemical reactions soared. This article introduced a novel in-situ monitoring device that utilized an electronic tongue system. Comprising a centrifuge, experimental unit, microfluidic chip, and electronic tongue plug (or stopper), the device facilitated simultaneous sample mixing, stimulus signaling, and response signal collection. The chip, serving as the carrier for the samples, provided a stable and sealed environment, which was crucial for electronic tongue monitoring. Acting as the plug for the chip, the electronic tongue enabled in-situ monitoring of liquids. Proven effective in studying nucleotide selection and amino acid regulation during peptide formation, this device broadened the possibilities of automated monitoring designs and was deployed in the Wentian module of Tiangong space station, advancing the application prospects of the electronic tongue system in space chemistry.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107840"},"PeriodicalIF":4.7,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical detection of pesticides: A comprehensive review on voltammetric determination of malathion, 2,4-D, carbaryl, and glyphosate","authors":"Andualem Ejigu , Molla Tefera , Atnafu Guadie","doi":"10.1016/j.elecom.2024.107839","DOIUrl":"10.1016/j.elecom.2024.107839","url":null,"abstract":"<div><div>Pesticides are widely used in agriculture to protect crops from diseases, insects, and weeds. However, a significant portion of these pesticides fail to reach their intended destination and instead contaminate the soil and water sources. As interest in on-site analyte detection continues to grow, alternative methods of pesticide measurement have gained considerable attention. This review focuses on the electrochemical detection of four important pesticides: malathion, 2,4-dichlorophenoxy acetic acid, glyphosate, and carbamates, utilizing a variety of electrochemical sensing techniques, electrode materials, electrolyte media, and sample arrays. By summarizing various electrochemical studies, the review provides an overview of reported analytical results, including limits of detection and linearity ranges. The article highlights recent advances in the electrochemical detection of selected pesticides and addresses the challenges and efforts involved in achieving electrochemical detection suitable for field applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107839"},"PeriodicalIF":4.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farah Ibrahim , Alexandre Sala , Armand Fahs , Aoife Morrin , Clément Nanteuil , Guillaume Laffite , Ian A. Nicholls , Fiona Regan , Hugues Brisset , Catherine Branger
{"title":"Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH","authors":"Farah Ibrahim , Alexandre Sala , Armand Fahs , Aoife Morrin , Clément Nanteuil , Guillaume Laffite , Ian A. Nicholls , Fiona Regan , Hugues Brisset , Catherine Branger","doi":"10.1016/j.elecom.2024.107837","DOIUrl":"10.1016/j.elecom.2024.107837","url":null,"abstract":"<div><div>Electrochemical molecularly imprinted polymers (e-MIPs) were grafted for the first time as a thin layer to the surface of a gold electrode to perform trace level electroanalysis of benzo(a)pyrene (BaP). This was achieved by controlled/living radical photopolymerization of a redox tracer monomer (ferrocenylmethyl methacrylate, FcMMA) with ethylene glycol dimethacrylate in the presence of benzo(a)pyrene as the template molecule. For that purpose, a novel photoiniferter-derived SAM was first deposited on the gold surface. The SAM formation was monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Then, the “grafting from” of the e-MIP was achieved upon photoirradiation during a controlled time. Differential pulse voltammetry was used to quantify BaP in aqueous solution by following the modification of the signal of FcMMA. A limit of detection of 0.19 nM in water and a linear range of 0.66 nM to 4.30 nM, were determined, thus validating the enhancement of sensitivity induced by the close contact between the e-MIP and the electrode, and the improved transfer electron.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107837"},"PeriodicalIF":4.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A.R. Sarbishei, S.M. Masoudpanah, M. Hasheminiasari, S.A. Sanei
{"title":"In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant","authors":"A.R. Sarbishei, S.M. Masoudpanah, M. Hasheminiasari, S.A. Sanei","doi":"10.1016/j.elecom.2024.107838","DOIUrl":"10.1016/j.elecom.2024.107838","url":null,"abstract":"<div><div>The free-binder NiCo<sub>2</sub>S<sub>4</sub>/nickel foam electrode was prepared using a two-step solvothermal method: double-layered hydroxide formation and sulfurization. The effects of cetyltrimethylammonium bromide (CTAB) on the structural, microstructural, and electrochemical properties throughout the sulfurization process were investigated using various characterization techniques. By adding the CTAB surfactant, the sheetlike morphology of NiCo<sub>2</sub>S<sub>4</sub> material was transformed to a fine particular morphology. Using one mmol CTAB surfactant, the specific capacitance of NiCo<sub>2</sub>S<sub>4</sub>/nickel foam increased from 578 to 835 C g<sup>−1</sup> due to the downsizing of particles, inducing the higher electroactive sites for redox reactions. An asymmetric capacitor of NiCo<sub>2</sub>S<sub>4</sub> as positive and CuCo<sub>2</sub>S<sub>4</sub> as negative electrodes demonstrated an energy density of 23.2 Wh kg<sup>−1</sup> at a power density of 5040 W kg<sup>−1</sup>.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107838"},"PeriodicalIF":4.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gillian Collins , Tara N. Barwa , Luke Glennon , P. Rupa Kasturi , Carmel B. Breslin
{"title":"Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating","authors":"Gillian Collins , Tara N. Barwa , Luke Glennon , P. Rupa Kasturi , Carmel B. Breslin","doi":"10.1016/j.elecom.2024.107835","DOIUrl":"10.1016/j.elecom.2024.107835","url":null,"abstract":"<div><div>Nickel foam (NF) substrates are widely used to support electrocatalysts, and this is frequently achieved using hydrothermal reactions, where the NF is immersed in the hydrothermal reactor together with the electrocatalyst precursors. However, other reactions including the corrosion of the NF and changes to the pH occur simultaneously, and these can affect the quality of the final electrocatalyst. Herein, a simple approach is devised to minimise these unwanted reactions. Carbon black (CB) was non-covalently functionalised at room temperature using tannic acid to give very stable and good dispersions of fCB in deionised water. Using a simple sonication step, the NF was coated with a uniform layer of the dispersed fCB. This layer served to minimise the corrosion of the underlying NF during the hydrothermal reactions with very good protection observed up to a temperature of 160 °C in deionised water at a pH of 2.0. The corrosion currents of the NF and fCB@NF were estimated at 8.7 µA and 3.9 µA, respectively, at room temperature in this acidic solution. Using a model reaction, the successful nucleation and growth of MnCo<sub>2</sub>O<sub>4</sub> cubes was observed at fCB@NF, but not at the corroding NF.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107835"},"PeriodicalIF":4.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soon-Kyu Kwon , Jun-Nyeong Kim , Hyung-Gi Byun , Hyeon-June Kim
{"title":"Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems","authors":"Soon-Kyu Kwon , Jun-Nyeong Kim , Hyung-Gi Byun , Hyeon-June Kim","doi":"10.1016/j.elecom.2024.107834","DOIUrl":"10.1016/j.elecom.2024.107834","url":null,"abstract":"<div><div>This study introduces a novel readout circuit architecture that enhances semiconductor gas sensor systems by reducing power consumption, enabling miniaturization, and improving economic viability. Validated at the PCB level, the design shows strong commercial potential by addressing power efficiency and signal accuracy challenges. The technology is adaptable for applications in environmental monitoring, industrial safety, and medical diagnostics, where efficient and reliable gas sensing is essential.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107834"},"PeriodicalIF":4.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saira Kausar , Maria Yousaf , Sadullah Mir , Nasser S. Awwad , Huriyyah A. Alturaifi , Farhan Riaz
{"title":"Mesoporous Materials: Synthesis and electrochemical applications","authors":"Saira Kausar , Maria Yousaf , Sadullah Mir , Nasser S. Awwad , Huriyyah A. Alturaifi , Farhan Riaz","doi":"10.1016/j.elecom.2024.107836","DOIUrl":"10.1016/j.elecom.2024.107836","url":null,"abstract":"<div><div>Mesoporous materials are the epicentre of numerous scientific innovations with tunable pore size and extensive surface area, harnessing their potential in multiple fields such as electrocatalysis, photocatalysis, and environmental remediation. This review offers a detailed overview of diverse categories, synthesis methods, and various applications of mesoporous materials. Distinct categories of porous materials are thoroughly analyzed, featuring mesoporous silica, ordered mesoporous carbon, mesoporous MOFs, mesoporous metals, and metal oxides. Moreover, different synthesis techniques are explored in this review such as template-assisted methods employing hard and soft templates, sol–gel processing, hydrothermal, and microwave-assisted synthesis showcasing their role in the development of materials with tailored properties. Furthermore, this review delves into numerous applications of mesoporous materials, including their role in energy storage devices, photocatalysis, water splitting for fuel production, environmental remediation, sensing, adsorption, and desalination techniques like capacitive deionization for the treatment of brackish water. This review distinguishes itself by providing a thorough analysis of mesoporous materials, equipped with tables, figures, and diagrams for better understanding, and highlights the significant influence of mesoporous materials on contemporary science and technology.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107836"},"PeriodicalIF":4.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah
{"title":"Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties","authors":"Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah","doi":"10.1016/j.elecom.2024.107833","DOIUrl":"10.1016/j.elecom.2024.107833","url":null,"abstract":"<div><div>Anodization enables nano-structure fabrication through electrochemical parameter control. While various approaches exist for creating localized or patterned oxide layers, many are complex and time-consuming. This study adopted a commercial 3D printer for high-speed (1 mm/s) anodization, forming TiO<sub>2</sub> nanotube layers on Ti substrates in G-code-designed patterns. Comprehensive characterization using XRD, SEM, XPS, and simulated electric field distribution analysis revealed well-defined nanostructures and provided insights into the formation mechanism. Furthermore, viologen-anchored TiO<sub>2</sub> showed significantly improved electrochromic performance compared to pristine TiO<sub>2</sub>, with a higher reflectance difference (46.2% vs. 6.85%). This 3D printing-anodization hybrid method offers a rapid approach to fabricating patterned TiO<sub>2</sub> nanostructures, showing promise for electrochromic devices with enhanced optical modulation capabilities.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107833"},"PeriodicalIF":4.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wirefree Electrochemistry for Enhanced Detection and Treatment of Disease","authors":"Oisín Foley Doyle , Robert J. Forster","doi":"10.1016/j.elecom.2024.107832","DOIUrl":"10.1016/j.elecom.2024.107832","url":null,"abstract":"<div><div>Wirefree, or bipolar electrochemistry, BPE, has the potential to transform patient outcomes through early diagnosis using ultrasensitive sensors for multiple biomarkers and personalised treatments such as enhanced cell growth, differentiation and destruction as well as local delivery of therapeutics. We highlight the emerging field of wirefree electroceuticals and show how BPE could enable precise modulation of neural circuits, non-pharmaceutical therapies for conditions like Parkinson’s disease and chronic pain management, as well as on-demand drug delivery with high spatial and temporal precision. Moreover, it explores the integration of advanced nanomaterials illustrating their pivotal role in enhancing electrode performance and biocompatibility, thereby maximising their potential diagnostic and therapeutic efficacy especially <em>in vivo</em>.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107832"},"PeriodicalIF":4.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominik Venus , Moritz Valeske , Matthew Brodt , Peter Wasserscheid , Simon Thiele
{"title":"The influence of acetone and isopropanol crossover on the direct isopropanol fuel cell","authors":"Dominik Venus , Moritz Valeske , Matthew Brodt , Peter Wasserscheid , Simon Thiele","doi":"10.1016/j.elecom.2024.107823","DOIUrl":"10.1016/j.elecom.2024.107823","url":null,"abstract":"<div><div>Liquid organic hydrogen carriers (LOHC) offer a promising option to store and release hydrogen on demand within existing infrastructure. The direct isopropanol fuel cell (DIFC) uses the electrochemical acetone/isopropanol LOHC couple and combines the advantages of high fuel energy density at ambient conditions with CO<sub>2</sub>-free direct electricity production. Like other alcohol fuel cells, the DIFC combines two kinetically slow reactions, the isopropanol oxidation reaction (IOR) and the oxygen reduction reaction (ORR), requiring considerable overpotentials to drive the reactions. Accordingly, deconvoluting kinetic characteristics in the full cell is difficult. Therefore, this work uses the electrolytic electrochemical dehydrogenation unit (EDU), consisting of the IOR and the kinetically fast hydrogen evolution reaction in acidic media. This EDU then serves as an IOR full-cell model to get insights on the DIFC. Correspondingly, the demonstrated work is a comparison study investigating in-house fabricated catalyst-coated membrane electrode assemblies as hydrogen fuel cells, DIFC, and EDU. It investigates characteristic features of the DIFC and demonstrates how the acetone and isopropanol crossover affect the cathode of the DIFC.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107823"},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}