Lin Wang , Hai Yu , YaXin Wang , Chun Miao , QianQian Lei , XinPing Yao , XiaoChen Yao , Xin Wei , JianGuo Lv , Yan Xue , JingWen Zhang , SiWen Zhou , DanDan Qu
{"title":"Electrodeposition of p-type Cu2O on n-type TiO2 nanosheet arrays for enhanced photoelectrochemical water splitting","authors":"Lin Wang , Hai Yu , YaXin Wang , Chun Miao , QianQian Lei , XinPing Yao , XiaoChen Yao , Xin Wei , JianGuo Lv , Yan Xue , JingWen Zhang , SiWen Zhou , DanDan Qu","doi":"10.1016/j.elecom.2025.108009","DOIUrl":null,"url":null,"abstract":"<div><div>This study synthesized p-type Cu<sub>2</sub>O using an electrodeposition method and firmly attached it to TiO<sub>2</sub> nanosheets based on fluorine-doped tin oxide (FTO) substrates, forming a dense film that serves directly as a photoanode for photoelectrochemical (PEC) water splitting. Characterization techniques such as XRD, SEM, XPS, and UV–Vis confirmed the successful deposition of Cu<sub>2</sub>O on the TiO<sub>2</sub> nanosheets, forming a p-n heterojunction structure. The incorporation of Cu<sub>2</sub>O effectively broadened the light absorption range of TiO<sub>2</sub>, with a cut-off wavelength red-shifting to 537 nm, enabling it to absorb more visible light. Photoelectrochemical tests showed that under illuminated unbiased conditions, the photocurrent density of Cu<sub>2</sub>O-TiO<sub>2</sub> reached 0.3 mA/cm<sup>2</sup>, which is 7.5 times that of TiO<sub>2</sub>. After applying a small bias (0.5 V), the photocurrent density further increased to 2.1 mA/cm<sup>2</sup>, 5.2 times that under unbiased conditions, indicating that the introduction of electricity effectively accelerated the separation efficiency of photo-generated carriers. The Cu₂O-TiO₂ heterojunction exhibited significantly higher photocurrent density (measured by LSV) and charge transfer efficiency (evaluated by EIS) than pure TiO₂. This research provides new insights for PEC water splitting technology and serves as a reference for designing high-performance photocatalysts.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"178 ","pages":"Article 108009"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study synthesized p-type Cu2O using an electrodeposition method and firmly attached it to TiO2 nanosheets based on fluorine-doped tin oxide (FTO) substrates, forming a dense film that serves directly as a photoanode for photoelectrochemical (PEC) water splitting. Characterization techniques such as XRD, SEM, XPS, and UV–Vis confirmed the successful deposition of Cu2O on the TiO2 nanosheets, forming a p-n heterojunction structure. The incorporation of Cu2O effectively broadened the light absorption range of TiO2, with a cut-off wavelength red-shifting to 537 nm, enabling it to absorb more visible light. Photoelectrochemical tests showed that under illuminated unbiased conditions, the photocurrent density of Cu2O-TiO2 reached 0.3 mA/cm2, which is 7.5 times that of TiO2. After applying a small bias (0.5 V), the photocurrent density further increased to 2.1 mA/cm2, 5.2 times that under unbiased conditions, indicating that the introduction of electricity effectively accelerated the separation efficiency of photo-generated carriers. The Cu₂O-TiO₂ heterojunction exhibited significantly higher photocurrent density (measured by LSV) and charge transfer efficiency (evaluated by EIS) than pure TiO₂. This research provides new insights for PEC water splitting technology and serves as a reference for designing high-performance photocatalysts.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.