Electrochemistry Communications最新文献

筛选
英文 中文
Polymer-based passive layer to stabilize zinc anode in aqueous electrolyte 在水性电解质中稳定锌阳极的聚合物被动层
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-03-08 DOI: 10.1016/j.elecom.2024.107697
H. Chotard , P.L. Taberna , P. Simon
{"title":"Polymer-based passive layer to stabilize zinc anode in aqueous electrolyte","authors":"H. Chotard ,&nbsp;P.L. Taberna ,&nbsp;P. Simon","doi":"10.1016/j.elecom.2024.107697","DOIUrl":"10.1016/j.elecom.2024.107697","url":null,"abstract":"<div><p>Metallic zinc holds promise as a cost-effective and scalable material for secondary energy storage applications. However, its inherent reversibility issues hinder its practical implementation. Among various strategies, interface engineering has emerged as a promising approach to enhance the reversibility of zinc anodes. Herein we introduce an innovative method involving the parallel deposition of poly(acrylic acid) (PAA) and zinc metal, creating a composite layer of polymer and zinc, denoted as Zn-PAA. This unique Zn-PAA layer deposition technique remarkably enhances interfacial behavior, ensuring superior cyclic stability in symmetric cells. Moreover, the Zn-PAA layer reduces polarization effects and effectively mitigates interface alterations during plating and stripping processes resulting in increased interface stability. This study highlights the potential of simultaneous electropolymerisation and zinc deposition as a promising strategy to coat and densify interface on zinc anode with intertangled matrix of zinc and polymer for improving the performance and stability of zinc anodes in batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"162 ","pages":"Article 107697"},"PeriodicalIF":5.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000407/pdfft?md5=91251aca7371fce257deccc26c52a573&pid=1-s2.0-S1388248124000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140106256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High performance carboxymethyl cellulose- polyethylene oxide polymer binder for black phosphorus anode in lithium-ion batteries 用于锂离子电池黑磷负极的高性能羧甲基纤维素-聚氧化乙烯聚合物粘合剂
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-03-08 DOI: 10.1016/j.elecom.2024.107699
Fangli Xiao , Bofeng Wang , Xing Gao , Lingke Li , Wenqiang Ai , Shuo Zhao , Yang Liu , Lei Zu , Huiqin Lian
{"title":"High performance carboxymethyl cellulose- polyethylene oxide polymer binder for black phosphorus anode in lithium-ion batteries","authors":"Fangli Xiao ,&nbsp;Bofeng Wang ,&nbsp;Xing Gao ,&nbsp;Lingke Li ,&nbsp;Wenqiang Ai ,&nbsp;Shuo Zhao ,&nbsp;Yang Liu ,&nbsp;Lei Zu ,&nbsp;Huiqin Lian","doi":"10.1016/j.elecom.2024.107699","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107699","url":null,"abstract":"<div><p>Black phosphorus (BP) is regarded as a promising anode material due to its high theoretical specific capacity and fast charging safety. However, the problems of huge volume expansion and moderate electrical conductivity may restrict its performance. In this work, we present a novel 3D network binary polymer binder synthesized from carboxymethyl cellulose (CMC) and polyethylene oxide (PEO) for adapt to lithium-ion batteries of BP and graphite (G) composite anode (BP-G). There are the following characteristics of the binder: CMC and PEO are crosslinked through intermolecular forces; while CMC and PEO are connected to BP through strong intermolecular forces, respectively; BP and graphite are connected through P<img>C and P<img>O<img>C bonds to form composite anode. So as to form a sturdy structure and effectively accommodate the volume expansion of BP during charging-discharging processes, while avoiding loss of electrical contact between electrode components. Accordingly, the lithium-ion battery shown an excellent electrochemical performance, such as a high initial discharge capacity of 1602 mA h g<sup>−1</sup> at 0.5 A/g.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107699"},"PeriodicalIF":5.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000420/pdfft?md5=0d62ca0ce47ac33dc889555f00c0752e&pid=1-s2.0-S1388248124000420-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pitch-derived P-doped carbon/GeP3 composite via ball milling towards enhanced sodium-ion storage 通过球磨获得沥青基掺杂碳/GeP3 复合材料,从而增强钠离子存储能力
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-03-08 DOI: 10.1016/j.elecom.2024.107698
Kewei Shu , Cunguo Yang , Huizhu Niu , Xiaorui Fuyan , Shuqi Yang , Haihua Wang
{"title":"Pitch-derived P-doped carbon/GeP3 composite via ball milling towards enhanced sodium-ion storage","authors":"Kewei Shu ,&nbsp;Cunguo Yang ,&nbsp;Huizhu Niu ,&nbsp;Xiaorui Fuyan ,&nbsp;Shuqi Yang ,&nbsp;Haihua Wang","doi":"10.1016/j.elecom.2024.107698","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107698","url":null,"abstract":"<div><p>GeP<sub>3</sub> is a promising anode material for sodium ion battery due to better conductivity, relatively high theoretical capacity and improved mechanical endurance compared to phosphorus and other phosphides. However unsatisfied rate capability and cycling stability is still an annoying issue that hinders the application of GeP<sub>3</sub>. Here, GeP<sub>3</sub> was hybridized with P doped carbon (PPC) derived from low-cost coal tar pitch to prepare composite electrode. Through ball-milling process, the GeP<sub>3</sub> and PPC was homogenously mixed and form fused, secondary particles as confirmed by electron microscope. The formation of P-C and P-O-C bond between GeP<sub>3</sub> and carbon matrix was evidenced by XPS, and prompted by P doping level and O content in PPC. The electrochemical performance of the composite electrodes was evaluated, demonstrated much enhanced properties compared to bare GeP<sub>3</sub> and also GeP<sub>3</sub>/carbon black electrode. High reversible capacity of 781 mAh/g was achieved by GeP<sub>3</sub>/PPC-950 at 0.05 A/g. At higher current density of 2 A/g, the capacity can maintain at 360 mAh/g, 46% of the value that obtained at 0.05 A/g. The correlation between the structure of carbon and battery performance was discussed. The improvement in battery performance can be attributed to suppressed volume expansion and good conductive network of the GeP<sub>3</sub>/PPC composite, which affected by P doping level and O content of PPC.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107698"},"PeriodicalIF":5.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000419/pdfft?md5=34f4f94b84f2081de8e50a7cb1e7b86d&pid=1-s2.0-S1388248124000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly sensitive electrochemical sensing probe incorporating classical Berthelot's reaction and glassy carbon electrode for measuring ultra-trace levels of ammonia/ NH4+ in water 一种高灵敏度的电化学传感探针,结合了经典的贝特洛反应和玻璃碳电极,用于测量水中超痕量的氨/NH4+含量
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-03-06 DOI: 10.1016/j.elecom.2024.107686
H. Alwael , A.S. Alharthi , M.M. Dabi , M. Oubaha , M.S. El-Shahawi
{"title":"A highly sensitive electrochemical sensing probe incorporating classical Berthelot's reaction and glassy carbon electrode for measuring ultra-trace levels of ammonia/ NH4+ in water","authors":"H. Alwael ,&nbsp;A.S. Alharthi ,&nbsp;M.M. Dabi ,&nbsp;M. Oubaha ,&nbsp;M.S. El-Shahawi","doi":"10.1016/j.elecom.2024.107686","DOIUrl":"10.1016/j.elecom.2024.107686","url":null,"abstract":"<div><p>In quantifying NH<sub>3</sub> and/or NH<sub>4</sub><sup>+</sup> ions, the wavelength-based spectrochemical methods involving formation of colored products of the Berthelot’s or Nessler reactions might be challenging due to auto-self absorbance, spectral overlap, and background scattering noise<strong>.</strong> Thus, the current study reports a renewable glassy carbon electrode (GCE) sensing probe combined with Berthelot’s reaction (indophenol formation) and adsorptive square - wave-anodic stripping voltammetry (Ads SWSV) at pH = 10 for detection of NH<sub>3</sub> and/or NH<sub>4</sub><sup>+</sup> in water. The redox characteristics and the high surface coverage of the oxidation product of indophenol on the sensing platform suggested its use for NH<sub>3</sub> and/or NH<sub>4</sub><sup>+</sup> detection. The electrochemical sensing probe for NH<sub>4</sub><sup>+</sup> displayed good linear relationship between 5.56 nM and 55.6 μM of NH<sub>4</sub><sup>+</sup> with limits of detection (LOD) and quantitation (LOQ) of 4.83 × 10<sup>-9</sup> and 1.47 × 10<sup>-8</sup> M, and sensing probe sensitivity of 1.27μA/μM<sup>−1</sup> cm<sup>−2</sup>,<!--> <!-->respectively. The probe was applied for measuring NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup> <!-->in fresh and seawater samples, and the results were validated using standard ion chromatography (IC) and micro spectrophotometry assays. The assembled probe was also tolerably selective against interfering of other contaminants in a comparable potential window. Additionally, the probe has exceptional selectivity, long-term stability, and repeatability, and has good capacity to detect NH<sub>3</sub> and/or NH<sub>4</sub><sup>+</sup> ions with high accuracy (recovery range = 97.14 ± 4.12–102.9 ± 4.7) in environmental water samples. The calculated Student <em>t<sub>exp</sub></em> and <em>F<sub>exp</sub></em> values (n = 5) were less than the tabulated <em>t<sub>tab</sub></em> (2.78) and <em>F<sub>tab</sub></em> (6.39) at 95 % probability <em>(P</em> = 0.05, n = 5). The study offer high reliability towards NH<sub>3</sub> and/or NH<sub>4</sub><sup>+</sup> detection in complex environments.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"162 ","pages":"Article 107686"},"PeriodicalIF":5.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000298/pdfft?md5=6bd3d141796a46bc85f36176a08c9948&pid=1-s2.0-S1388248124000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalysis at vegetable oil water interface 植物油水界面的电催化
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-03-03 DOI: 10.1016/j.elecom.2024.107694
Aleksandra Siwiec, Katarzyna Dusilo, Monika Asztemborska, Marcin Opallo
{"title":"Electrocatalysis at vegetable oil water interface","authors":"Aleksandra Siwiec,&nbsp;Katarzyna Dusilo,&nbsp;Monika Asztemborska,&nbsp;Marcin Opallo","doi":"10.1016/j.elecom.2024.107694","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107694","url":null,"abstract":"<div><p>Biphasic oxygen reduction and hydrogen evolution are studied for almost two decades, because of favourable overpotential decrease as compared to aqueous solution. Until now, polar solvents (ε &gt; 7) were employed as organic phase in these studies. Here, we applied non polar vegetable oils (rapeseed, linen or sunflower) for biphasic H<sub>2</sub>O<sub>2</sub> generation by oxygen reduction. This product was detected at oil|aqueous acid solution interface by scanning electrochemical microscopy, when electron donor – decamethylferrocene, was electrochemically recycled. Ejection of small fraction of decamethylferrocenium cation from oil to aqueous phase was also noticed.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107694"},"PeriodicalIF":5.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000377/pdfft?md5=14dc78d9d48eddcfc17ccc5b9939201f&pid=1-s2.0-S1388248124000377-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140062722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells 将含有锰阳离子的 Pr0.5Sr0.5FeO3 氧化物定制为质子传导型固体氧化物燃料电池的阴极
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-02-25 DOI: 10.1016/j.elecom.2024.107685
Xin Yang , Guoqiang Li , Yue Zhou , Chongzheng Sun , Lei Bi
{"title":"Tailoring Pr0.5Sr0.5FeO3 oxides with Mn cations as a cathode for proton-conducting solid oxide fuel cells","authors":"Xin Yang ,&nbsp;Guoqiang Li ,&nbsp;Yue Zhou ,&nbsp;Chongzheng Sun ,&nbsp;Lei Bi","doi":"10.1016/j.elecom.2024.107685","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107685","url":null,"abstract":"<div><p>The traditional Pr<sub>0.5</sub>Sr<sub>0.5</sub>FeO<sub>3</sub> (PSF) cathode is customized with Mn cations to generate the new Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>3</sub> (PSFMn) cathode for proton-conducting solid oxide fuel cells (H-SOFCs). Compared to the PSF oxide, the new PSFMn has a reduced thermal expansion, making it more compatible with electrolytes. Furthermore, Mn-doping enhances oxygen vacancy production in PSF, as revealed by experimental and first-principle calculations. More crucially, doping Mn into PSF improves proton diffusion kinetics, resulting in quicker proton diffusion and surface exchange. As a result, the H-SOFC with the PSFMn cathode achieves an output of 1446 mW cm<sup>−2</sup> at 700 °C, but the PSF cell only achieves fuel cell performance of 1009 mW cm<sup>−2</sup>. The fundamental cause of the increased cell performance is the significantly reduced polarization resistance, implying that using the Mn-doping strategy enhances the cathode kinetics of conventional PSF cathodes for H-SOFC.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107685"},"PeriodicalIF":5.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000286/pdfft?md5=a616420830ea67f8c3205fa75eed9aa2&pid=1-s2.0-S1388248124000286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes 阐明-OH含量对反超晶固体电解质相变和锂离子传输的影响
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-02-25 DOI: 10.1016/j.elecom.2024.107684
Zunqiu Xiao , Huaying Wang , Ningyuan Cai , Yutong Li , Kejia Xiang , Wei Wei , Tao Ye , Zhongtai Zhang , Shitong Wang , Zilong Tang
{"title":"Elucidating the effects of −OH content on phase transition and Li-ion transport of anti-perovskite solid electrolytes","authors":"Zunqiu Xiao ,&nbsp;Huaying Wang ,&nbsp;Ningyuan Cai ,&nbsp;Yutong Li ,&nbsp;Kejia Xiang ,&nbsp;Wei Wei ,&nbsp;Tao Ye ,&nbsp;Zhongtai Zhang ,&nbsp;Shitong Wang ,&nbsp;Zilong Tang","doi":"10.1016/j.elecom.2024.107684","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107684","url":null,"abstract":"<div><p>Anti-perovskite materials such as Li<sub>2</sub>(OH)Cl have garnered considerable interest as solid electrolytes due to their numerous advantages. However, the low ionic conductivity of the orthorhombic Li<sub>2</sub>(OH)Cl near room temperature presents a significant challenge for the application. In this study, we intricately modulate the −OH content in Li<sub>2</sub>(OH)Cl through a controlled heat treatment process. This method effectively increases the cubic phase content and lowers the phase transition temperature, thereby enhancing the ionic conductivity at 30 °C by more than an order of magnitude. Theoretical calculations illustrate that the removal of −OH content significantly reduces the barrier for phase transition, leading to substantial alterations in the Li-ion transport pathway and migration barrier. Furthermore, LiHClO-600 demonstrates exceptional resistance to lithium reduction and is compatible with lithium metal and LiFePO<sub>4</sub>, rendering it a viable solid electrolyte for batteries. Both experimental findings and theoretical calculations cohesively highlight the pivotal role of −OH content in driving phase transition and facilitating Li-ion transport in anti-perovskite solid electrolytes, paving the way for their potential utilization in all-solid-state batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107684"},"PeriodicalIF":5.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000274/pdfft?md5=89ea848dda67b7e574e3808964152f37&pid=1-s2.0-S1388248124000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured and porous antimony-doped tin oxide as electrode material for the heat-to-electricity energy conversion in thermo-electrochemical cells 将纳米结构和多孔掺锑氧化锡作为热电化学电池中热-电能量转换的电极材料
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-02-25 DOI: 10.1016/j.elecom.2024.107683
Sergio Castro-Ruiz, Jorge García-Cañadas
{"title":"Nanostructured and porous antimony-doped tin oxide as electrode material for the heat-to-electricity energy conversion in thermo-electrochemical cells","authors":"Sergio Castro-Ruiz,&nbsp;Jorge García-Cañadas","doi":"10.1016/j.elecom.2024.107683","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107683","url":null,"abstract":"<div><p>Thermo-electrochemical cells (or thermogalvanic cells or thermocells, TECs) have gained attention as devices able to convert low temperature heat into electricity. Within TECs, Pt is one of the most employed electrodes, since it exhibits a fast transfer of electrons with the redox couple in the electrolyte. However, its high price represents a serious drawback. Here, we analyze the use of nanostructured and porous antimony-doped tin oxide (Sb:SnO<sub>2</sub>) as electrode material. Electrodes of different thickness (320, 550 and 1550 nm) were fabricated by spin coating to study the effect of the electrode area in contact with the electrolyte. F:SnO<sub>2</sub> (FTO) glass was used as a substrate and the typical 0.4 M potassium ferro/ferricyanide aqueous solution served as electrolyte. An impedance spectroscopy analysis under operating conditions (10 K temperature difference) showed that the Sb:SnO<sub>2</sub> electrodes exhibit the same excellent kinetics as Pt for all the different thickness. On the other hand, the power output density was thickness independent, since the temperature coefficients and the series and mass-transport resistances were similar, leading to no performance improvements when the electrode area in contact with the electrolyte was significantly increased. Finally, the Carnot-related efficiencies estimated for the Sb:SnO<sub>2</sub> cells were in the same order of magnitude as for Pt electrodes. These results open the possibility to use Sb:SnO<sub>2</sub> as a suitable electrode in TECs at low cost.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107683"},"PeriodicalIF":5.4,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000262/pdfft?md5=37fcfa92352d631ccbd02bf390088103&pid=1-s2.0-S1388248124000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposited graphene@TiO2 nanosheets for enhanced photocathodic protection 用于增强光阴极保护的电沉积石墨烯@二氧化钛纳米片
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-02-24 DOI: 10.1016/j.elecom.2024.107682
Qian-Yu Wang, Teng Xu, Ji-Ming Hu
{"title":"Electrodeposited graphene@TiO2 nanosheets for enhanced photocathodic protection","authors":"Qian-Yu Wang,&nbsp;Teng Xu,&nbsp;Ji-Ming Hu","doi":"10.1016/j.elecom.2024.107682","DOIUrl":"https://doi.org/10.1016/j.elecom.2024.107682","url":null,"abstract":"<div><p>In this work, TiO<sub>2</sub> was firmly attached on freestanding graphene (Gr, rather than graphene oxide or reduced graphene oxide) nanosheets (Gr@e-TiO<sub>2</sub>) by a novel electrodeposition method. The morphology, crystal structure, band gap characteristics, optical properties and photoelectric properties were systematically investigated. It is indicated that the absorption of visible light increased and the recombination of photogenerated electron-hole pairs decreased for the as-obtained Gr@e-TiO<sub>2</sub>. Compared with pure TiO<sub>2</sub> as well as GO (graphene oxide)@h-TiO<sub>2</sub> prepared by conventional hydrothermal method, Gr@e-TiO<sub>2</sub> exhibited a more negative open circuit potential and higher photocurrent density for 304SS protection. The enhanced photocathodic protection performance of Gr@e-TiO<sub>2</sub> can be attributed to the large specific surface area and good charge transport efficiency of graphene.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"160 ","pages":"Article 107682"},"PeriodicalIF":5.4,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000250/pdfft?md5=ebdcaf937613fd872e90737e19b3d017&pid=1-s2.0-S1388248124000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of biocurrent conduction to soil microenvironment 生物电流传导对土壤微环境的响应
IF 5.4 3区 工程技术
Electrochemistry Communications Pub Date : 2024-02-21 DOI: 10.1016/j.elecom.2024.107681
Side Yang , Danfeng Li , Xin Yu , Mohan Bai , Huike Ye , Yang Sun , Lixia Zhao , Yali Chen , Xiaojing Li , Yongtao Li
{"title":"Response of biocurrent conduction to soil microenvironment","authors":"Side Yang ,&nbsp;Danfeng Li ,&nbsp;Xin Yu ,&nbsp;Mohan Bai ,&nbsp;Huike Ye ,&nbsp;Yang Sun ,&nbsp;Lixia Zhao ,&nbsp;Yali Chen ,&nbsp;Xiaojing Li ,&nbsp;Yongtao Li","doi":"10.1016/j.elecom.2024.107681","DOIUrl":"10.1016/j.elecom.2024.107681","url":null,"abstract":"<div><p>The biocurrent generated by soil extracellular electron transfer (EET) partly drives biogeochemical cycles and controls soil quality. However, it is unclear how the soil abiotic and biotic conditions affect the biocurrent conduction. In this study, the response relationship of soil microenvironment and <em>in-situ</em> biocurrent was studied. The results showed that red soil exhibited the optimal electron transfer efficiency, as evidenced by the maximum current density and accumulated charge output, with increments of 56–93 % and 80–2800 %, respectively, compared with the other five types of soils. Soil physicochemical properties were the most important factor on the biocurrent generation, and further the quantity and bioavailability of dissolved organic matter, NH<sub>4</sub><sup>+</sup>-N content, and lower pH were predictive indicators for the exoelectrogenic processes of soils. In addition, the high soil biocurrent was likely determined by a complex synergistic network of the transformation of carbon and nitrogen, electroactive bacteria involving the functions of cell wall/membrane and cytochrome enzyme metabolism and transport related EET process. Overall, we provide an insight into the relationship among soil biocurrent conduction, physicochemical properties, bacteria community and metabolic function, and a support for bioelectrochemical technology application.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107681"},"PeriodicalIF":5.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000249/pdfft?md5=80a100beb8058b2265595c20d3e16031&pid=1-s2.0-S1388248124000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信