Synthesis and exploration of NiSe2-GO composites as electrocatalysts with high-performance oxygen evolution reaction

IF 4.2 3区 工程技术 Q2 ELECTROCHEMISTRY
Basit Ali Khan , Fengqi Zhou , Tongsheng Zhang , Shams ur Rahman , Attia Sadiq , Farasat Haider , Fazila Shafique , Rafaqat Hussain , Jaweria Khalid
{"title":"Synthesis and exploration of NiSe2-GO composites as electrocatalysts with high-performance oxygen evolution reaction","authors":"Basit Ali Khan ,&nbsp;Fengqi Zhou ,&nbsp;Tongsheng Zhang ,&nbsp;Shams ur Rahman ,&nbsp;Attia Sadiq ,&nbsp;Farasat Haider ,&nbsp;Fazila Shafique ,&nbsp;Rafaqat Hussain ,&nbsp;Jaweria Khalid","doi":"10.1016/j.elecom.2025.108008","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, NiSe<sub>2</sub>/GO composites were successfully synthesized by using a facile and effective chemical method to increase the catalytic activity and charge transfer efficiency for oxygen evolution reaction (OER). The structural analysis confirmed the successful preparation of NiSe<sub>2</sub> and NiSe<sub>2</sub>-GO (10 %, 25 %) composites. Similarly, the morphology of NiSe<sub>2</sub> appeared to be nanocubes, whilst NiSe<sub>2</sub>-GO (10 %, 25 %) composites revealed features comprising of both NiSe<sub>2</sub> nanocubes and GO sheets. The electrochemical performance of NiSe<sub>2</sub> and NiSe<sub>2</sub>-GO (10 %, 25 %) composites was also investigated for enhanced OER. Among the synthesized compositions, NiSe<sub>2</sub>–25 % GO demonstrated the most superior electrocatalytic performance, which exhibited a significantly lower Tafel slope (66 mV/dec at 10 mV/s). Electrochemical impedance spectroscopy (EIS) analysis further confirmed the high efficiency of NiSe<sub>2</sub>–25 % GO, where a smallest semicircle in the Nyquist plot was observed. In terms of overpotential, NiSe<sub>2</sub>–25 % GO achieved a remarkably low value of ∼350 mV, demonstrating superior catalytic efficiency compared to NiSe<sub>2</sub>–10 % GO (∼500 mV) and pristine NiSe<sub>2</sub> (∼600 mV). The significantly reduced overpotential suggested that the NiSe<sub>2</sub>–25 % GO material required the least energy input to drive the reaction at a given current density. This enhanced performance was attributed to the synergistic effect between NiSe<sub>2</sub> and GO, where the GO matrix provided a favorable pathway for electron transfer, while NiSe<sub>2</sub> acted as an active catalytic site for OER. These findings highlight NiSe<sub>2</sub>–25 % GO as a highly effective and promising electrocatalyst for OER applications. Its superior charge transport characteristics, lower overpotential, and faster reaction kinetics make it a strong candidate for next-generation energy conversion and storage technologies.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"179 ","pages":"Article 108008"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001481","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, NiSe2/GO composites were successfully synthesized by using a facile and effective chemical method to increase the catalytic activity and charge transfer efficiency for oxygen evolution reaction (OER). The structural analysis confirmed the successful preparation of NiSe2 and NiSe2-GO (10 %, 25 %) composites. Similarly, the morphology of NiSe2 appeared to be nanocubes, whilst NiSe2-GO (10 %, 25 %) composites revealed features comprising of both NiSe2 nanocubes and GO sheets. The electrochemical performance of NiSe2 and NiSe2-GO (10 %, 25 %) composites was also investigated for enhanced OER. Among the synthesized compositions, NiSe2–25 % GO demonstrated the most superior electrocatalytic performance, which exhibited a significantly lower Tafel slope (66 mV/dec at 10 mV/s). Electrochemical impedance spectroscopy (EIS) analysis further confirmed the high efficiency of NiSe2–25 % GO, where a smallest semicircle in the Nyquist plot was observed. In terms of overpotential, NiSe2–25 % GO achieved a remarkably low value of ∼350 mV, demonstrating superior catalytic efficiency compared to NiSe2–10 % GO (∼500 mV) and pristine NiSe2 (∼600 mV). The significantly reduced overpotential suggested that the NiSe2–25 % GO material required the least energy input to drive the reaction at a given current density. This enhanced performance was attributed to the synergistic effect between NiSe2 and GO, where the GO matrix provided a favorable pathway for electron transfer, while NiSe2 acted as an active catalytic site for OER. These findings highlight NiSe2–25 % GO as a highly effective and promising electrocatalyst for OER applications. Its superior charge transport characteristics, lower overpotential, and faster reaction kinetics make it a strong candidate for next-generation energy conversion and storage technologies.
NiSe2-GO复合材料高效析氧电催化剂的合成与探索
本研究采用简便有效的化学方法成功合成了nis2 /GO复合材料,提高了析氧反应(OER)的催化活性和电荷转移效率。结构分析证实了NiSe2和NiSe2- go(10%, 25%)复合材料的成功制备。同样,NiSe2的形貌似乎是纳米立方体,而NiSe2-GO(10%, 25%)复合材料显示出NiSe2纳米立方体和氧化石墨烯薄片的特征。研究了NiSe2和NiSe2- go(10%, 25%)复合材料的电化学性能。在所合成的组合物中,nise2 - 25%氧化石墨烯表现出最优异的电催化性能,其Tafel斜率显著降低(10 mV/s下为66 mV/dec)。电化学阻抗谱(EIS)分析进一步证实了nise2 - 25%氧化石墨烯的高效率,在Nyquist图中观察到一个最小的半圆。在过电位方面,NiSe2 - 25%氧化石墨烯达到了非常低的值(~ 350 mV),与NiSe2 - 10%氧化石墨烯(~ 500 mV)和原始NiSe2 (~ 600 mV)相比,显示出更高的催化效率。过电位的显著降低表明nise2 - 25%氧化石墨烯材料在给定电流密度下驱动反应所需的能量输入最少。这种增强的性能归因于NiSe2和氧化石墨烯之间的协同效应,其中氧化石墨烯基质为电子转移提供了有利的途径,而NiSe2则作为OER的活性催化位点。这些发现突出了nise2 - 25%氧化石墨烯作为OER应用中高效且有前景的电催化剂。其优越的电荷传输特性、较低的过电位和更快的反应动力学使其成为下一代能量转换和存储技术的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信