Microbial Biotechnology最新文献

筛选
英文 中文
Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-04-02 DOI: 10.1111/1751-7915.70137
Román A. Martino, Daniel C. Volke, Albano H. Tenaglia, Paula M. Tribelli, Pablo I. Nikel, Andrea M. Smania
{"title":"Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption","authors":"Román A. Martino,&nbsp;Daniel C. Volke,&nbsp;Albano H. Tenaglia,&nbsp;Paula M. Tribelli,&nbsp;Pablo I. Nikel,&nbsp;Andrea M. Smania","doi":"10.1111/1751-7915.70137","DOIUrl":"https://doi.org/10.1111/1751-7915.70137","url":null,"abstract":"<p>The second messenger <i>bis</i>-(3′ → 5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen <i>Pseudomonas aeruginosa</i>, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in <i>P. aeruginosa</i> PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Single-Plasmid Inducible-Replication System for High-Yield Production of Short Ff (f1, M13 or fd)-Phage-Derived Nanorods
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-04-01 DOI: 10.1111/1751-7915.70113
Rayén Ignacia León-Quezada, Majela González Miró, Sofia Khanum, Andrew J. Sutherland-Smith, Vicki A. M. Gold, Jasna Rakonjac
{"title":"A Single-Plasmid Inducible-Replication System for High-Yield Production of Short Ff (f1, M13 or fd)-Phage-Derived Nanorods","authors":"Rayén Ignacia León-Quezada,&nbsp;Majela González Miró,&nbsp;Sofia Khanum,&nbsp;Andrew J. Sutherland-Smith,&nbsp;Vicki A. M. Gold,&nbsp;Jasna Rakonjac","doi":"10.1111/1751-7915.70113","DOIUrl":"https://doi.org/10.1111/1751-7915.70113","url":null,"abstract":"<p>Ff (f1, M13 or fd) filamentous phages have been used for myriad applications including phage display, assembly of nanostructures and as carriers of agents used for diagnostic and therapeutic purposes. Recently, short Ff phage-derived functionalised nanorods have emerged as a superior alternative to full-length filamentous phages for applications from lateral flow assays to cell- and tissue-targeting. Their advantages, such as shorter length and the lack of antibiotic resistance genes, make them particularly promising for expanding the current scope of Ff bionanotechnology and biomedical applications. Limitations to the widespread use of Ff-derived nanorods include a requirement for two plasmids and the relatively low production efficiency. This is due to the presence of only the positive Ff origin of replication, allowing replication of only the positive strand. Here we describe a single-plasmid negative origin-containing inducible-replication system for nanorod production. These improvements simplify and increase nanorod production by two orders of magnitude compared with the constitutive positive origin-only production system. The high concentration of nanorods allows formation of higher-order structures, such as stacks and rafts, as imaged by transmission electron microscopy. In summary, our system will facilitate production and expand the applications of Ff-derived biological nanorods.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designer Glycolysomes: Colocalisation of Glycolytic Enzymes on a Cellulosome-Based Synthetic Protein Scaffold
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-31 DOI: 10.1111/1751-7915.70134
Marte Elias, Kenan Meert, Julie Vanderstraeten, Babette Lamote, Yves Briers
{"title":"Designer Glycolysomes: Colocalisation of Glycolytic Enzymes on a Cellulosome-Based Synthetic Protein Scaffold","authors":"Marte Elias,&nbsp;Kenan Meert,&nbsp;Julie Vanderstraeten,&nbsp;Babette Lamote,&nbsp;Yves Briers","doi":"10.1111/1751-7915.70134","DOIUrl":"https://doi.org/10.1111/1751-7915.70134","url":null,"abstract":"<p>In systems biocatalysis, combining pathway enzymes in vitro allows for the conversion of basic substrates into more complex, valuable chemicals. However, in vitro enzyme cascades are not yet economically viable for large-scale bio-based chemical production. Enhancing pathway efficiency through enzyme colocalization on synthetic protein scaffolds is a proposed solution, though still debated. We constructed a synthetic protein scaffold that colocalises the first three glycolytic enzymes using cohesin–dockerin interactions. Initially, we converted wild-type enzymes to the docking enzyme mode and evaluated their activity. Next, we demonstrate how the colocalisation of the three docking enzymes on distinct scaffolds enhances the enzyme cascade's production. Starting from glucose, the multi-enzyme complexes produced fructose-1,6-bisphosphate, confirming the activity of each enzyme. PfkA, which converts fructose-6-phosphate and ATP to fructose-1,6-bisphosphate and ADP, was identified as the rate-limiting enzyme. We demonstrated that scaffolding proximity effects lead to higher product output than free docking enzymes, particularly at lower enzyme densities. Further research is needed to determine the relevance of enzyme colocalisation under industrial production settings. In addition, optimising an enzyme cascade demands a thorough understanding of reaction mechanisms and kinetics. The VersaTile method streamlines optimisation studies of modular proteins and complexes, enabling analysis of a broader design space by bypassing technical preparatory hurdles.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria”
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70136
{"title":"Correction to “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria”","authors":"","doi":"10.1111/1751-7915.70136","DOIUrl":"https://doi.org/10.1111/1751-7915.70136","url":null,"abstract":"<p>Chen, N., Liu, L., Wang, J., et al. 2025. “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria.” <i>Microbial Biotechnology</i> 18, no. 2: e70107. https://doi.org/10.1111/1751-7915.70107.</p><p>In the Acknowledgements and Funding sections, the text ‘41776168’ was incorrect. This should have read as ‘42176101’. Additionally, ‘Ningbo Natural Science Foundation (2021Z04)’ was incorrect. This should have read as ‘Ningbo Key Science and Technology Development Program (2021Z046)’.</p><p>The online article has also been updated with these corrections.</p><p>We apologise for this error.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria”
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70136
{"title":"Correction to “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria”","authors":"","doi":"10.1111/1751-7915.70136","DOIUrl":"https://doi.org/10.1111/1751-7915.70136","url":null,"abstract":"<p>Chen, N., Liu, L., Wang, J., et al. 2025. “Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria.” <i>Microbial Biotechnology</i> 18, no. 2: e70107. https://doi.org/10.1111/1751-7915.70107.</p><p>In the Acknowledgements and Funding sections, the text ‘41776168’ was incorrect. This should have read as ‘42176101’. Additionally, ‘Ningbo Natural Science Foundation (2021Z04)’ was incorrect. This should have read as ‘Ningbo Key Science and Technology Development Program (2021Z046)’.</p><p>The online article has also been updated with these corrections.</p><p>We apologise for this error.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to ‘Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK’
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70138
{"title":"Correction to ‘Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK’","authors":"","doi":"10.1111/1751-7915.70138","DOIUrl":"https://doi.org/10.1111/1751-7915.70138","url":null,"abstract":"<p>Molinari, G., S. S. Ribeiro, K. Müller, et al. 2025. “Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for <i>Pseudomonas aeruginosa</i> Flagellum Assembly and Indicate a New Function for DnaK.” Microbial Biotechnology 18, no. 2: e70096. https://doi.org/10.1111/1751-7915.70096.</p><p>In paragraph 4 of the ‘3.8 | DnaK Functions in an ATP-Independent Manner at Both Physiological and Mild Acidic pHs’ subsection in the ‘Results’ section, the equation ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK</sub><i>D − A</i><sub>iSOD1</sub>’ was incorrect. This should have read: ‘<i>ΔD/A</i><sub>Initial</sub> <i>= D/A</i><sub>iDnaK</sub> <i>− D/A</i><sub>iSOD1</sub>’.</p><p>In caption of Figure 6 (C) of the ‘Results’ section, the equation ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK/Nucleotides</sub><i>D</i>/<i>A</i><sub>iSOD1</sub>’ was incorrect. This should have read: ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK/Nucleotides</sub> − <i>D</i>/<i>A</i><sub>iSOD1</sub>’.</p><p>We apologise for this error.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecology and Evolutionary Biology as Frameworks to Study Wine Fermentations
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70078
Ignacio Belda, Belen Benitez-Dominguez, Sergio Izquierdo-Gea, Jean C. C. Vila, Javier Ruiz
{"title":"Ecology and Evolutionary Biology as Frameworks to Study Wine Fermentations","authors":"Ignacio Belda,&nbsp;Belen Benitez-Dominguez,&nbsp;Sergio Izquierdo-Gea,&nbsp;Jean C. C. Vila,&nbsp;Javier Ruiz","doi":"10.1111/1751-7915.70078","DOIUrl":"https://doi.org/10.1111/1751-7915.70078","url":null,"abstract":"<p>Winemaking has leveraged microbiology to enhance wine quality, typically by engineering and inoculating individual yeast strains with desirable traits. However, yeast strains do not grow alone during wine fermentation, rather they are embedded in diverse and evolving microbial communities exhibiting complex ecological dynamics. Understanding and predicting the interplay between the yeast community over the course of the species succession and the chemical matrix of wine can benefit from recognising that wine, like all microbial ecosystems, is subject to general ecological and evolutionary rules. In this piece, we outline how conceptual and methodological frameworks from community ecology and evolutionary biology can assist wine yeast researchers in improving wine fermentation processes by understanding the mechanisms governing population dynamics, predicting and engineering these important microcosms, and unlocking the genetic potential for wine strain development.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to ‘Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK’
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70138
{"title":"Correction to ‘Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK’","authors":"","doi":"10.1111/1751-7915.70138","DOIUrl":"https://doi.org/10.1111/1751-7915.70138","url":null,"abstract":"<p>Molinari, G., S. S. Ribeiro, K. Müller, et al. 2025. “Multiple Chaperone DnaK–FliC Flagellin Interactions Are Required for <i>Pseudomonas aeruginosa</i> Flagellum Assembly and Indicate a New Function for DnaK.” Microbial Biotechnology 18, no. 2: e70096. https://doi.org/10.1111/1751-7915.70096.</p><p>In paragraph 4 of the ‘3.8 | DnaK Functions in an ATP-Independent Manner at Both Physiological and Mild Acidic pHs’ subsection in the ‘Results’ section, the equation ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK</sub><i>D − A</i><sub>iSOD1</sub>’ was incorrect. This should have read: ‘<i>ΔD/A</i><sub>Initial</sub> <i>= D/A</i><sub>iDnaK</sub> <i>− D/A</i><sub>iSOD1</sub>’.</p><p>In caption of Figure 6 (C) of the ‘Results’ section, the equation ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK/Nucleotides</sub><i>D</i>/<i>A</i><sub>iSOD1</sub>’ was incorrect. This should have read: ‘Δ<i>D</i>/<i>A</i><sub>Initial</sub> = <i>D</i>/<i>A</i><sub>iDnaK/Nucleotides</sub> − <i>D</i>/<i>A</i><sub>iSOD1</sub>’.</p><p>We apologise for this error.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecology and Evolutionary Biology as Frameworks to Study Wine Fermentations
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-26 DOI: 10.1111/1751-7915.70078
Ignacio Belda, Belen Benitez-Dominguez, Sergio Izquierdo-Gea, Jean C. C. Vila, Javier Ruiz
{"title":"Ecology and Evolutionary Biology as Frameworks to Study Wine Fermentations","authors":"Ignacio Belda,&nbsp;Belen Benitez-Dominguez,&nbsp;Sergio Izquierdo-Gea,&nbsp;Jean C. C. Vila,&nbsp;Javier Ruiz","doi":"10.1111/1751-7915.70078","DOIUrl":"https://doi.org/10.1111/1751-7915.70078","url":null,"abstract":"<p>Winemaking has leveraged microbiology to enhance wine quality, typically by engineering and inoculating individual yeast strains with desirable traits. However, yeast strains do not grow alone during wine fermentation, rather they are embedded in diverse and evolving microbial communities exhibiting complex ecological dynamics. Understanding and predicting the interplay between the yeast community over the course of the species succession and the chemical matrix of wine can benefit from recognising that wine, like all microbial ecosystems, is subject to general ecological and evolutionary rules. In this piece, we outline how conceptual and methodological frameworks from community ecology and evolutionary biology can assist wine yeast researchers in improving wine fermentation processes by understanding the mechanisms governing population dynamics, predicting and engineering these important microcosms, and unlocking the genetic potential for wine strain development.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Efflux-Mediated Multidrug Resistance in Botrytis cinerea for Improved Management of Fungicide Resistance
IF 5.7 2区 生物学
Microbial Biotechnology Pub Date : 2025-03-25 DOI: 10.1111/1751-7915.70074
Zhaochen Wu, Junting Zhang, Jianjun Hao, Pengfei Liu, Xili Liu
{"title":"Understanding Efflux-Mediated Multidrug Resistance in Botrytis cinerea for Improved Management of Fungicide Resistance","authors":"Zhaochen Wu,&nbsp;Junting Zhang,&nbsp;Jianjun Hao,&nbsp;Pengfei Liu,&nbsp;Xili Liu","doi":"10.1111/1751-7915.70074","DOIUrl":"https://doi.org/10.1111/1751-7915.70074","url":null,"abstract":"<p><i>Botrytis cinerea</i> is a major fungal pathogen infecting over 1400 plant species. It poses a significant threat to agriculture due to multiple fungicide resistance and multidrug resistance, involves resistance to fungicides with different modes of action. Multiple fungicide resistance is mostly due to an accumulation of point mutations in target genes over time, and MDR is result from efflux (e-MDR) and metabolism (m-MDR). This review introduces the occurrence of e-MDR of <i>B. cinerea</i>, the key mechanisms, origins and management strategies of e-MDR in fields. New materials such as nanomaterials become a strategy to overcoming MDR via inhibition of ABC transporter. A deeper understanding of efflux-mediated MDR will provide a support for the MDR management of <i>B. cinerea</i> and the efficient utilization of fungicides.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信