Magnus G. Jespersen, Emil Funk Vangsgaard, Mariana Arango Saavedra, Stefano Donati, Lars K. Nielsen
{"title":"单碳基生物制造中铜树物种的比较基因组评估","authors":"Magnus G. Jespersen, Emil Funk Vangsgaard, Mariana Arango Saavedra, Stefano Donati, Lars K. Nielsen","doi":"10.1111/1751-7915.70201","DOIUrl":null,"url":null,"abstract":"<p>The transition from a petroleum-based manufacturing to biomanufacturing is an important step towards a sustainable bio-economy. In particular, biotechnological processes which use one carbon (C1) compounds as feedstock represent an interesting avenue. Many bacterial species evolved naturally to thrive on such compounds, among them <i>Cupriavidus necator,</i> which has been studied in the past due to its range of metabolic capabilities in utilisation and production of compounds of interest. <i>Cupriavidus necator</i> strain H16 is the reference laboratory strain for this species and by far the most extensively studied. In contrast, research efforts and genomic characterisation of other strains within this species have been limited and sporadic. Therefore, the genomic diversity and full metabolic potential across the broader species remain poorly understood. In this work, we collected publicly available genomes along with newly sequenced ones. From a collection of 44 genomes, we curated a final collection of 22 genomes deemed to be <i>C. necator</i>. We examined hallmark metabolic functions, including carbon dioxide fixation, formate assimilation and hydrogen utilisation. We identified methylation motifs and restriction modification systems. Finally, strains ATCC 25207, TA06, and 1978 are proposed as candidate strains of interest based on their genomic make-up and observations from literature. This work provides a comprehensive genomic resource for the <i>C. necator</i> species, facilitating its development as a biomanufacturing platform and advancing our understanding of its metabolic diversity and potential applications.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 7","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70201","citationCount":"0","resultStr":"{\"title\":\"Comparative Genomic Assessment of the Cupriavidus necator Species for One-Carbon Based Biomanufacturing\",\"authors\":\"Magnus G. Jespersen, Emil Funk Vangsgaard, Mariana Arango Saavedra, Stefano Donati, Lars K. Nielsen\",\"doi\":\"10.1111/1751-7915.70201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transition from a petroleum-based manufacturing to biomanufacturing is an important step towards a sustainable bio-economy. In particular, biotechnological processes which use one carbon (C1) compounds as feedstock represent an interesting avenue. Many bacterial species evolved naturally to thrive on such compounds, among them <i>Cupriavidus necator,</i> which has been studied in the past due to its range of metabolic capabilities in utilisation and production of compounds of interest. <i>Cupriavidus necator</i> strain H16 is the reference laboratory strain for this species and by far the most extensively studied. In contrast, research efforts and genomic characterisation of other strains within this species have been limited and sporadic. Therefore, the genomic diversity and full metabolic potential across the broader species remain poorly understood. In this work, we collected publicly available genomes along with newly sequenced ones. From a collection of 44 genomes, we curated a final collection of 22 genomes deemed to be <i>C. necator</i>. We examined hallmark metabolic functions, including carbon dioxide fixation, formate assimilation and hydrogen utilisation. We identified methylation motifs and restriction modification systems. Finally, strains ATCC 25207, TA06, and 1978 are proposed as candidate strains of interest based on their genomic make-up and observations from literature. This work provides a comprehensive genomic resource for the <i>C. necator</i> species, facilitating its development as a biomanufacturing platform and advancing our understanding of its metabolic diversity and potential applications.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70201\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70201","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Genomic Assessment of the Cupriavidus necator Species for One-Carbon Based Biomanufacturing
The transition from a petroleum-based manufacturing to biomanufacturing is an important step towards a sustainable bio-economy. In particular, biotechnological processes which use one carbon (C1) compounds as feedstock represent an interesting avenue. Many bacterial species evolved naturally to thrive on such compounds, among them Cupriavidus necator, which has been studied in the past due to its range of metabolic capabilities in utilisation and production of compounds of interest. Cupriavidus necator strain H16 is the reference laboratory strain for this species and by far the most extensively studied. In contrast, research efforts and genomic characterisation of other strains within this species have been limited and sporadic. Therefore, the genomic diversity and full metabolic potential across the broader species remain poorly understood. In this work, we collected publicly available genomes along with newly sequenced ones. From a collection of 44 genomes, we curated a final collection of 22 genomes deemed to be C. necator. We examined hallmark metabolic functions, including carbon dioxide fixation, formate assimilation and hydrogen utilisation. We identified methylation motifs and restriction modification systems. Finally, strains ATCC 25207, TA06, and 1978 are proposed as candidate strains of interest based on their genomic make-up and observations from literature. This work provides a comprehensive genomic resource for the C. necator species, facilitating its development as a biomanufacturing platform and advancing our understanding of its metabolic diversity and potential applications.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes