{"title":"Microbes as Teachers: Rethinking Knowledge in the Anthropocene","authors":"Rachel Armstrong","doi":"10.1111/1751-7915.70195","DOIUrl":null,"url":null,"abstract":"<p>This opinion piece proposes that the environmental crises of our time arise from a failure to recognise the vital role of microbes in sustaining life on Earth, where ecosystems have been shaped for billions of years by microbial processes, including oxygen production, nutrient cycling and climate regulation. Yet the idea that microbes can ‘teach’ us how to navigate complexity, adapt across scales, and sustain planetary systems is still marginalised in science, policy, and education. A paradigm shift is proposed: microbes must be reframed as active collaborators in solving global challenges. This perspective is grounded in microbial ecology, Indigenous knowledge, and ethical philosophy, advocating for ‘learning’ through and with microbial life. To institutionalise this transition, policy and educational reforms are urged, centring microbial literacy as a foundation for ecological understanding. By integrating microbial agency into human knowledge systems, societal actions could be realigned with the biochemical and evolutionary logics that have sustained life for millennia. Ultimately, a deeper engagement with microbial knowledge is called for—one that informs a more sustainable future.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This opinion piece proposes that the environmental crises of our time arise from a failure to recognise the vital role of microbes in sustaining life on Earth, where ecosystems have been shaped for billions of years by microbial processes, including oxygen production, nutrient cycling and climate regulation. Yet the idea that microbes can ‘teach’ us how to navigate complexity, adapt across scales, and sustain planetary systems is still marginalised in science, policy, and education. A paradigm shift is proposed: microbes must be reframed as active collaborators in solving global challenges. This perspective is grounded in microbial ecology, Indigenous knowledge, and ethical philosophy, advocating for ‘learning’ through and with microbial life. To institutionalise this transition, policy and educational reforms are urged, centring microbial literacy as a foundation for ecological understanding. By integrating microbial agency into human knowledge systems, societal actions could be realigned with the biochemical and evolutionary logics that have sustained life for millennia. Ultimately, a deeper engagement with microbial knowledge is called for—one that informs a more sustainable future.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes