Fatemeh Alibabaei-Omran, Nima Javanmehr, Atiyeh Al-e-Ahmad, Ebrahim Zabihi, Tohid Najafi
{"title":"Viewing Decellularized Amniotic Membrane Through the Lens of Coupled Scaffolding and Drug Delivery Systems in Regenerative Medicine","authors":"Fatemeh Alibabaei-Omran, Nima Javanmehr, Atiyeh Al-e-Ahmad, Ebrahim Zabihi, Tohid Najafi","doi":"10.1155/term/8818058","DOIUrl":"https://doi.org/10.1155/term/8818058","url":null,"abstract":"<div>\u0000 <p>Regenerative medicine (RM) exploits stem cells to construct biological replacements and repair damaged tissues, offering an alternative to daunting organ transplantation. Even while RM has advanced quickly, building an entire organ remains beyond our capabilities. Experts are thus investigating the adoption of biologically generated composites that preserve the tissue’s crucial physiological, morphological, and mechanical characteristics. Noncellular tissues like extracellular matrix offer cells a milieu similar to their physiological niche, becoming a promising substitute for synthetic composites. In this context, amnion, the membrane enclosing the fetus, is a great contender since it is widely obtainable and economical. Given its biochemical and anatomic characteristics, and the extensive supply of stem cells, growth factors, and matrix proteins, the amnion is considered a fantastic candidate to employ in RM. Decellularized amniotic membrane (DAM) has many uses as two- and three-dimensional scaffolds, anchoring for cell adhesion and expansion for tissue regeneration, and as carrier systems for cell and drug cargoes. The present research aims to assess the recent surge in DAM-RM research, potentially to get beyond the existing barriers impeding the RM’s clinical translation landscape. The present paper draws a comprehensive picture of the experimental evidence and clinical trials regarding exploiting DAM in RM.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/8818058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jolene Quek, Catarina Vizetto-Duarte, Kee Woei Ng, Swee Hin Teoh, Yen Choo
{"title":"Fully Defined 3D Hybrid System for Bone Tissue Engineering: Integration of MeHA–RGD/PCL–TCP Scaffolds With Human Stem Cells via 3D-Printed Vacuum-Assisted Cell Loading Device","authors":"Jolene Quek, Catarina Vizetto-Duarte, Kee Woei Ng, Swee Hin Teoh, Yen Choo","doi":"10.1155/term/7287217","DOIUrl":"https://doi.org/10.1155/term/7287217","url":null,"abstract":"<div>\u0000 <p>Despite ongoing efforts, the regeneration of critical-sized bone defects remains a significant challenge for clinicians due to the absence of a standard clinically compliant bone tissue engineering protocol. These challenges are mostly attributed to the inadequacies of current methods, characterized by their high variability and the reliance on animal-derived components, such as fetal bovine serum (FBS) in cell culture. To address these shortcomings, our approach diverges from conventional practices by prioritizing consistency and reproducibility, and the complete elimination of animal derivatives throughout the entire process. We have developed a novel method that utilizes a peptide-functionalized photocrosslinkable methacrylated hyaluronic acid (MeHA–RGD) hydrogel as a cell sealant for loading human adipose-derived stem cells (hASCs) into a 3D porous polycaprolactone–tricalcium phosphate (PCL–TCP) scaffold. Additionally, we created a 3D-printed vacuum-assisted cell loading device to facilitate this process and ensure efficiency and consistency during cell loading. Our findings indicate that the MeHA–RGD hydrogel supports both stem cell viability and osteogenic differentiation, demonstrating outcomes comparable to those achieved with fibrin glue, a conventional cell sealant widely used in BTE from autologous or xenogeneic sources, even under serum- and xeno-free conditions. In the pursuit of clinical translation, it is vital that biomaterials exhibit low variability, are easily accessible, readily available, and completely free of animal derivatives. To our knowledge, this is the first study to employ a 3D-printed vacuum-assisted cell loading device system within a fully defined hybrid 3D system under complete serum- and xeno-free conditions. These findings unravel and encourage alternative approaches in addressing the existing challenges in BTE, thereby facilitating and accelerating clinical translation in the future.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/7287217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144537076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen Allen, Natalie Pachter, Abigail Bandl, Haleema Qamar, Alex Ropars, Tracy A. Hookway
{"title":"Short-Term Electrical Stimulation Impacts Cardiac Cell Structure and Function","authors":"Kristen Allen, Natalie Pachter, Abigail Bandl, Haleema Qamar, Alex Ropars, Tracy A. Hookway","doi":"10.1155/term/3748093","DOIUrl":"https://doi.org/10.1155/term/3748093","url":null,"abstract":"<div>\u0000 <p>Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are used to model cardiac development and disease. This requires a robust population of mature CMs and external stimuli to mimic the complex environment of the heart. In effort toward this maturation, previous groups have applied electrical stimulation (ES) to CMs with varying results depending on the stimulation duration, frequency, and pattern. As such, there is an uncertainty surrounding the timeline on which stimulated iPSC-CMs begin to show early signs of maturation in comparison with their nonstimulated counterparts. Here, we introduce a low-cost custom bioreactor capable of delivering tunable ES to standard 2D cell monolayers. We show that, after exposure to short-term ES, stimulated CMs express early signs of maturation compared to nonstimulated controls. Changes to contractility and protein expression indicate cellular rearrangement within cell monolayers and induction of partial maturation in response to ES. While early signs of maturation are present after 3-4 days of ES, additional cellular structures must develop to reach complete maturation. We also show that this bioreactor can electrically stimulate cardiac fibroblasts (cFBs) and may induce alignment of cFB. We have shown that our custom ES bioreactor can be easily integrated into standard in vitro cell culture platforms to induce measurable changes in both CMs and cFB, exhibiting its potential for promoting crucial CM maturation and cell alignment for cardiac tissue engineering applications.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/3748093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144232389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D-Printed Triply Periodic Minimal Surface Ceramic Scaffold Loaded With Bone Morphogenetic Protein-2 and Zoledronic for Cranium Defect Repairment","authors":"Junteng Yan, Shuhao Qi, Yiwei Zhao, Peng Tian, Ning Kong, Weigang Ma, Peng Yan, Jiewen Zhang, Xu Gao, Huanshuai Guan, Pei Yang, Qin Lian, Kunzheng Wang","doi":"10.1155/term/9964384","DOIUrl":"https://doi.org/10.1155/term/9964384","url":null,"abstract":"<div>\u0000 <p>Managing large, critical-sized bone defects poses a complex challenge, especially when autografts are impractical due to their size and limited availability. In such situations, the development of synthetic bone implants becomes crucial. These implants can be carefully designed and manufactured as potential bone substitutes, offering controlled parameters such as porosity, hardness, and osteogenic cues. In this study, we employed digital light processing (DLP) technology to construct an alumina ceramic scaffold featuring a triply periodic minimal surface (TPMS) structure for bone transplantation. The scaffold was filled with type I collagen to enhance cell infiltration [1], thereby increasing the total surface area. In addition, type I collagen is a carrier for both bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA). Using a clinically relevant rabbit cranium defect model, the scaffold underwent in vivo assessment for its functionality in repairing critical-sized bone defect (approximately 8 mm). Four groups of animal experiments were carried out including the control group, the gyroid scaffold group, the type I collagen-loaded scaffold group, and the bioactive factor-functionalized scaffold group. Our animal-based study results revealed that the gyroid scaffold, functionalized with bioactive molecules, provided a conductive surface for promoting increased bone formation and enhancing the healing process in critical-sized long bone and cranium defects. These findings offer preclinical evidence, supporting the use of a TPMS structure composite scaffold and present compelling support for its application as an advanced synthetic bone substitute in the future.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/9964384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144140712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives”","authors":"","doi":"10.1155/term/9785638","DOIUrl":"https://doi.org/10.1155/term/9785638","url":null,"abstract":"<p>J. Heinämäki, O. Koshovyi, I. Botsula, et al., “Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives,” <i>Journal of Tissue Engineering and Regenerative Medicine</i> 2025, no. 6 (2025): 1–23, https://doi.org/10.1155/term/2812191.</p><p>In the article titled “Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives,” there was an error in the Funding section, where the MSCA4Ukraine project is not acknowledged. The corrected section appears below.</p><p>This work was supported by the Estonian Research Council (ERC) grant (PRG1903) and by the European Union in the MSCA4Ukraine project “Design and development of 3D-printed medicines for bioactive materials of Ukrainian and Estonian medicinal plants origin” (1232466).</p><p>We apologize for this error.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/9785638","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144085087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renaud Siboni, Johan Sergheraert, Lea Thoraval, Christine Guillaume, Sophie C. Gangloff, Xavier Ohl, Julien Braux, Frédéric Velard
{"title":"Optimisation and Validation of an Induced Membrane Technique Model to Assess Bone Regeneration in Rats","authors":"Renaud Siboni, Johan Sergheraert, Lea Thoraval, Christine Guillaume, Sophie C. Gangloff, Xavier Ohl, Julien Braux, Frédéric Velard","doi":"10.1155/term/7357277","DOIUrl":"https://doi.org/10.1155/term/7357277","url":null,"abstract":"<div>\u0000 <p><b>Background:</b> The induced membrane (IM) preclinical models have been described in small animals, but few studies have looked at bone regeneration achievement. The optimisation and validation of such a preclinical model, considering the results obtained after the use of biomaterials as a substitute for bone grafting, could lead to simplifying the surgical procedure and enhance the clinical results.</p>\u0000 <p><b>Methods:</b> An in vivo model of the IM technique was developed on the femur of Lewis rats after a 4-mm critical bone defect stabilised with an osteosynthesis plate. A first optimisation phase was performed by evaluating different osteotomy methods and two different osteosynthesis plate sizes. The efficiency of the model was evaluated by the failure rate obtained 6 weeks after the first operative time. Thereafter, bone regeneration was evaluated histologically and radiologically at 24 weeks to confirm the critical nature of the bone defect (negative control), the effectiveness of the IM with a syngeneic bone graft (positive control) and the possibility of using a biomaterial (GlassBone Noraker) in this model.</p>\u0000 <p><b>Results:</b> Sixty-three rats were included and underwent the first surgical step. Nineteen rats subsequently underwent the second surgical step. The results obtained led to select piezotomy as the best osteotomy technique and 1-mm-thick plates with 2.0-mm-diameter screws as osteosynthesis material. Twenty-four weeks after the second surgical step, solely the group with both surgical steps and a syngeneic bone graft showed complete ossification of the bone defect. In contrast, the group without a graft did not present a suitable ossification, which confirms the critical nature of the defect. IM produced an incomplete bone regeneration using GlassBone alone.</p>\u0000 <p><b>Conclusions:</b> A piezotome osteotomy with an osteosynthesis plate of sufficient stiffness is required for this two-stage bone regeneration model in rats. The 4-mm bone defect is critical for this model and suitable for biomaterial evaluation.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/7357277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haruki Nishimura, Yoichi Murata, Michael T. Mullen, Kohei Yamaura, Jacob Singer, Charles Huard, Dane R. G. Lind, William S. Hambright, Chelsea S. Bahney, Marc J. Philippon, Johnny Huard
{"title":"Combination Therapy of Losartan and Fisetin Reduces Senescence and Enhances Osteogenesis in Human Bone Marrow–Derived Mesenchymal Stem Cells","authors":"Haruki Nishimura, Yoichi Murata, Michael T. Mullen, Kohei Yamaura, Jacob Singer, Charles Huard, Dane R. G. Lind, William S. Hambright, Chelsea S. Bahney, Marc J. Philippon, Johnny Huard","doi":"10.1155/term/9187855","DOIUrl":"https://doi.org/10.1155/term/9187855","url":null,"abstract":"<div>\u0000 <p>Bone marrow–derived mesenchymal stem cells (BM-MSCs) are well established for their osteogenic potential but are prone to senescence with aging or in vitro expansion. Drug treatments that reduce cellular senescence may enhance the regenerative capacity of BM-MSCs. This study investigates the effects of losartan and fisetin, both separately and in combination, on cellular senescence and osteogenesis. Human BM-MSCs were exposed to low and high concentrations of each drug for 24 h. Our findings showed that high-dose losartan exhibited cytotoxicity, focusing subsequent analyses on the low doses. Both low-dose losartan and fisetin effectively mitigated cellular senescence, with combined treatment showing synergistic effects in reducing senescence markers. From these initial findings, subsequent experiments utilized low doses of both compounds to evaluate their effect on differentiation capacity. Our multimodal approach, incorporating flow cytometry, senescence-associated heterochromatin foci (SAHF) immunohistochemistry, senescence-associated secretory phenotype (SASP) quantification, and differentiation potential assays, revealed that the combination of 23.6 μM of losartan and 50 μM of fisetin was optimal for reducing cellular senescence and enhancing osteogenesis in BM-MSCs. These results support potential therapeutic strategies to counteract age-related declines in bone health and improve healing. By targeting cellular senescence while promoting osteogenesis, losartan and fisetin offer promising avenues for future research aimed at enhancing the regenerative capacity of BM-MSCs in the context of musculoskeletal regenerative medicine.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/9187855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Tissue Engineering and Regenerative Medicine
{"title":"RETRACTION: Changes in Immunological Parameters in Patients Treated Using Direct and Indirect Restorations of the Hard Tissues of the Anterior Teeth in Combination With an Antioxidant","authors":"Journal of Tissue Engineering and Regenerative Medicine","doi":"10.1155/term/9815150","DOIUrl":"https://doi.org/10.1155/term/9815150","url":null,"abstract":"<p>RETRACTION: I. R. Kumhyr, V. P. Levko, and Z. R. Ozhogan, “Changes in Immunological Parameters in Patients Treated Using Direct and Indirect Restorations of the Hard Tissues of the Anterior Teeth in Combination With an Antioxidant,” <i>Journal of Tissue Engineering and Regenerative Medicine</i> 14 (2020): 1001–1005, https://doi.org/10.1002/term.3054.</p><p>The above article, published online on 29 April 2020 in Wiley Online Library (https://wileyonlinelibrary.com), has been retracted by agreement between the Chief Editor, Catherine K. Kuo, and John Wiley & Sons Ltd. UK. The retraction has been agreed following concerns raised by a third party regarding the peer review process. Further investigation by the publisher has found manipulation of the peer review process. The authors did not respond to requests for an explanation. As a result, the conclusions reported in the article are not considered reliable.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/9815150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Lee Jenkins, Sadhana Venkataraman, Aya Saleh, Sarah Calve, Behnam Pourdeyhimi, Dianne Little
{"title":"Application of Tendon-Derived Matrix and Carbodiimide Crosslinking Matures the Engineered Tendon-Like Proteome on Meltblown Scaffolds","authors":"Thomas Lee Jenkins, Sadhana Venkataraman, Aya Saleh, Sarah Calve, Behnam Pourdeyhimi, Dianne Little","doi":"10.1155/term/2184723","DOIUrl":"https://doi.org/10.1155/term/2184723","url":null,"abstract":"<div>\u0000 <p><b>Background:</b> Tendon injuries are increasingly common and heal by fibrosis rather than scar-less regeneration. Tissue engineering seeks to improve repair using synthetic polymer scaffolds with biomimetic factors to enhance the regenerative potential.</p>\u0000 <p><b>Methods:</b> In this study, we compared three groups, namely, poly(lactic acid) (PLA) meltblown scaffolds, PLA meltblown scaffolds coated with tendon-derived matrix (TDM), and PLA meltblown scaffolds with carbodiimide crosslinked TDM (2.5:1:1 EDC:NHS:COOH ratio) (EDC-TDM) and determined their potential for engineered tendon development. We cultured human adipose stem cells (hASCs) for 28 days on meltblown scaffolds (<i>n</i> = 4–6/group) and measured tensile mechanical function, matrix synthesis, and matrix composition using biochemical assays and proteomics.</p>\u0000 <p><b>Results:</b> Coating PLA meltblown scaffolds with TDM improved yield stretch and stress at 28 days compared with PLA. Matrix synthesis rates for TDM or EDC-TDM were similar to PLA. Proteomic analysis revealed that hASCs produced a collagen-rich extracellular matrix, with many tendon-related matrix proteins. Coating scaffolds with TDM led to an increase in collagen type I whereas EDC-TDM scaffolds had an increase in glycoproteins and ECM regulators compared with other groups, consistent with increased maturity of the newly deposited matrix.</p>\u0000 <p><b>Conclusions:</b> TDM coating and crosslinking of meltblown scaffolds demonstrated matricellular benefits for the proteome of engineered tendon development but provided fewer clear benefits toward mechanical, biochemical, and rate of matrix accumulation than expected, and that previous work with electrospun scaffolds would suggest. However, electrospun scaffolds have different fiber structure and microarchitecture than meltblown, suggesting that further consideration of these differences and refinement of TDM application methods to meltblown scaffolds is required.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/2184723","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jyrki Heinämäki, Oleh Koshovyi, Iryna Botsula, Alina Shpychak, Hung Quoc Vo, Hoai Thi Nguyen, Ain Raal
{"title":"Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives","authors":"Jyrki Heinämäki, Oleh Koshovyi, Iryna Botsula, Alina Shpychak, Hung Quoc Vo, Hoai Thi Nguyen, Ain Raal","doi":"10.1155/term/2812191","DOIUrl":"https://doi.org/10.1155/term/2812191","url":null,"abstract":"<div>\u0000 <p>Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue–mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/2812191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}