Fully Defined 3D Hybrid System for Bone Tissue Engineering: Integration of MeHA–RGD/PCL–TCP Scaffolds With Human Stem Cells via 3D-Printed Vacuum-Assisted Cell Loading Device
IF 2.6 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jolene Quek, Catarina Vizetto-Duarte, Kee Woei Ng, Swee Hin Teoh, Yen Choo
{"title":"Fully Defined 3D Hybrid System for Bone Tissue Engineering: Integration of MeHA–RGD/PCL–TCP Scaffolds With Human Stem Cells via 3D-Printed Vacuum-Assisted Cell Loading Device","authors":"Jolene Quek, Catarina Vizetto-Duarte, Kee Woei Ng, Swee Hin Teoh, Yen Choo","doi":"10.1155/term/7287217","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Despite ongoing efforts, the regeneration of critical-sized bone defects remains a significant challenge for clinicians due to the absence of a standard clinically compliant bone tissue engineering protocol. These challenges are mostly attributed to the inadequacies of current methods, characterized by their high variability and the reliance on animal-derived components, such as fetal bovine serum (FBS) in cell culture. To address these shortcomings, our approach diverges from conventional practices by prioritizing consistency and reproducibility, and the complete elimination of animal derivatives throughout the entire process. We have developed a novel method that utilizes a peptide-functionalized photocrosslinkable methacrylated hyaluronic acid (MeHA–RGD) hydrogel as a cell sealant for loading human adipose-derived stem cells (hASCs) into a 3D porous polycaprolactone–tricalcium phosphate (PCL–TCP) scaffold. Additionally, we created a 3D-printed vacuum-assisted cell loading device to facilitate this process and ensure efficiency and consistency during cell loading. Our findings indicate that the MeHA–RGD hydrogel supports both stem cell viability and osteogenic differentiation, demonstrating outcomes comparable to those achieved with fibrin glue, a conventional cell sealant widely used in BTE from autologous or xenogeneic sources, even under serum- and xeno-free conditions. In the pursuit of clinical translation, it is vital that biomaterials exhibit low variability, are easily accessible, readily available, and completely free of animal derivatives. To our knowledge, this is the first study to employ a 3D-printed vacuum-assisted cell loading device system within a fully defined hybrid 3D system under complete serum- and xeno-free conditions. These findings unravel and encourage alternative approaches in addressing the existing challenges in BTE, thereby facilitating and accelerating clinical translation in the future.</p>\n </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/7287217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/term/7287217","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite ongoing efforts, the regeneration of critical-sized bone defects remains a significant challenge for clinicians due to the absence of a standard clinically compliant bone tissue engineering protocol. These challenges are mostly attributed to the inadequacies of current methods, characterized by their high variability and the reliance on animal-derived components, such as fetal bovine serum (FBS) in cell culture. To address these shortcomings, our approach diverges from conventional practices by prioritizing consistency and reproducibility, and the complete elimination of animal derivatives throughout the entire process. We have developed a novel method that utilizes a peptide-functionalized photocrosslinkable methacrylated hyaluronic acid (MeHA–RGD) hydrogel as a cell sealant for loading human adipose-derived stem cells (hASCs) into a 3D porous polycaprolactone–tricalcium phosphate (PCL–TCP) scaffold. Additionally, we created a 3D-printed vacuum-assisted cell loading device to facilitate this process and ensure efficiency and consistency during cell loading. Our findings indicate that the MeHA–RGD hydrogel supports both stem cell viability and osteogenic differentiation, demonstrating outcomes comparable to those achieved with fibrin glue, a conventional cell sealant widely used in BTE from autologous or xenogeneic sources, even under serum- and xeno-free conditions. In the pursuit of clinical translation, it is vital that biomaterials exhibit low variability, are easily accessible, readily available, and completely free of animal derivatives. To our knowledge, this is the first study to employ a 3D-printed vacuum-assisted cell loading device system within a fully defined hybrid 3D system under complete serum- and xeno-free conditions. These findings unravel and encourage alternative approaches in addressing the existing challenges in BTE, thereby facilitating and accelerating clinical translation in the future.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.