Ying Li, Lidao Xu, Yibo Zhao, Mingxian Meng, Yanan Chen, Bin Wang, Beijia Cui, Jin Liu, Jiuyan Han, Na Wang, Ting Zhao, Lei Sun, Zhe Ren, Xiong Han
{"title":"Topographic differences in EEG microstates: distinguishing juvenile myoclonic epilepsy from frontal lobe epilepsy.","authors":"Ying Li, Lidao Xu, Yibo Zhao, Mingxian Meng, Yanan Chen, Bin Wang, Beijia Cui, Jin Liu, Jiuyan Han, Na Wang, Ting Zhao, Lei Sun, Zhe Ren, Xiong Han","doi":"10.1007/s11571-025-10255-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop an exploratory classification model for Juvenile Myoclonic Epilepsy (JME) based on electroencephalogram (EEG) microstate features to assist clinical diagnosis and reduce misdiagnosis rates. A total of 123 participants were included in this study, consisting of 74 patients diagnosed with JME and 49 patients with Frontal Lobe Epilepsy (FLE). Resting-state EEG data were retrospectively collected from all participants. After preprocessing, microstate analysis was performed, and 24 microstate features (including duration, occurrence rate, coverage, and transition probability) were extracted and analyzed. Finally, the extracted microstate parameters were used to train six machine learning classifiers to distinguish between the two types of epilepsy. The performance of these models was assessed by calculating accuracy, precision, recall, F1 score, and area under the curve (AUC). The study found that all parameters of microstate A showed high consistency between the two groups. However, the JME group exhibited lower occurrence and smaller coverage of microstate B compared to the FLE group, while showing longer durations for microstate C. Additionally, the transition probabilities from microstate B to C and D were lower in the JME group, while the transition probability from C to D was significantly higher. When EEG microstate features were integrated into the six machine learning classifiers, the linear discriminant analysis (LDA) algorithm achieved the best classification performance (accuracy of 76.4%, precision of 79.5%, and AUC of 0.817). This study found significant differences in EEG microstate characteristics between JME and FLE. Based on 24 microstate features, a classification model was successfully developed and validated. These findings underscore the potential of EEG microstates as neurophysiological biomarkers for distinguishing between these two epilepsy types.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10255-9.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"72"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10255-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop an exploratory classification model for Juvenile Myoclonic Epilepsy (JME) based on electroencephalogram (EEG) microstate features to assist clinical diagnosis and reduce misdiagnosis rates. A total of 123 participants were included in this study, consisting of 74 patients diagnosed with JME and 49 patients with Frontal Lobe Epilepsy (FLE). Resting-state EEG data were retrospectively collected from all participants. After preprocessing, microstate analysis was performed, and 24 microstate features (including duration, occurrence rate, coverage, and transition probability) were extracted and analyzed. Finally, the extracted microstate parameters were used to train six machine learning classifiers to distinguish between the two types of epilepsy. The performance of these models was assessed by calculating accuracy, precision, recall, F1 score, and area under the curve (AUC). The study found that all parameters of microstate A showed high consistency between the two groups. However, the JME group exhibited lower occurrence and smaller coverage of microstate B compared to the FLE group, while showing longer durations for microstate C. Additionally, the transition probabilities from microstate B to C and D were lower in the JME group, while the transition probability from C to D was significantly higher. When EEG microstate features were integrated into the six machine learning classifiers, the linear discriminant analysis (LDA) algorithm achieved the best classification performance (accuracy of 76.4%, precision of 79.5%, and AUC of 0.817). This study found significant differences in EEG microstate characteristics between JME and FLE. Based on 24 microstate features, a classification model was successfully developed and validated. These findings underscore the potential of EEG microstates as neurophysiological biomarkers for distinguishing between these two epilepsy types.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10255-9.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.