{"title":"Enhanced brain network flexibility by physical exercise in female methamphetamine users.","authors":"Xiaoying Qi, Yingying Wang, Yingzhi Lu, Qi Zhao, Yifan Chen, Chenglin Zhou, Yuguo Yu","doi":"10.1007/s11571-022-09848-5","DOIUrl":"10.1007/s11571-022-09848-5","url":null,"abstract":"<p><p>Methamphetamine (MA) abuse is increasing worldwide, and evidence indicates that MA causes degraded cognitive functions such as executive function, attention, and flexibility. Recent studies have shown that regular physical exercise can ameliorate the disturbed functions. However, the potential functional network alterations resulting from physical exercise have not been extensively studied in female MA users. We collaborated with a drug rehabilitation center for this study to investigate changes in brain activity and network dynamics after two types of acute and long-term exercise interventions based on 64-channel electroencephalogram recordings of seventy-nine female MA users, who were randomly divided into three groups: control group (CG), dancing group (DG) and bicycling group (BG). Over a 12-week period, we observed a clear drop in the rate of brain activity in the exercise groups, especially in the frontal and temporal regions in the DG and the frontal and occipital regions in the BG, indicating that exercise might suppress hyperactivity and that different exercise types have distinct impacts on brain networks. Importantly, both exercise groups demonstrated enhancements in brain flexibility and network connectivity entropy, particularly after the acute intervention. Besides, a significantly negative correlation was found between Δattentional bias and Δbrain flexibility after acute intervention in both DG and BG. Analysis strongly suggested that exercise programs can reshape patient brains into a highly energy-efficient state with a lower activity rate but higher information communication capacity and more plasticity for potential cognitive functions. These results may shed light on the potential therapeutic effects of exercise interventions for MA users.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-022-09848-5.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3209-3225"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43833994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On hyper-parameter selection for guaranteed convergence of RMSProp.","authors":"Jinlan Liu, Dongpo Xu, Huisheng Zhang, Danilo Mandic","doi":"10.1007/s11571-022-09845-8","DOIUrl":"10.1007/s11571-022-09845-8","url":null,"abstract":"<p><p>RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues. Specifically, the hyperparameter, <math><msub><mi>β</mi> <mi>t</mi></msub> </math> , is considered as a time-varying sequence rather than a fine-tuned constant. We also provide a rigorous proof that the RMSProp can converge to critical points even for smooth and non-convex objectives, with a convergence rate of order <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <mi>T</mi> <mo>/</mo> <msqrt><mi>T</mi></msqrt> <mo>)</mo></mrow> </math> . This provides a new understanding of RMSProp divergence, a common issue in practical applications. Finally, numerical experiments show that time-varying RMSProp exhibits advantages over standard RMSProp on benchmark datasets and support the theoretical results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3227-3237"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41393024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-09-24DOI: 10.1007/s11571-024-10144-7
Zhe Zhang, Yanxiao Chen, Xu Zhao, Wang Fan, Ding Peng, Tianwen Li, Lei Zhao, Yunfa Fu
{"title":"A review of ethical considerations for the medical applications of brain-computer interfaces.","authors":"Zhe Zhang, Yanxiao Chen, Xu Zhao, Wang Fan, Ding Peng, Tianwen Li, Lei Zhao, Yunfa Fu","doi":"10.1007/s11571-024-10144-7","DOIUrl":"10.1007/s11571-024-10144-7","url":null,"abstract":"<p><p>The development and potential applications of brain-computer interfaces (BCIs) are directly related to the human brain and may have adverse effects on the users' physical and mental health. Ethical issues, particularly those associated with BCIs, including both non-medical and medical applications, have captured societal attention. This article initially reviews the application of three ethical frameworks in BCI technology: consequentialism, deontology, and virtue ethics. Subsequently, it introduces the ethical standards under consideration within the medical objective framework for BCI medical applications. Finally, the paper discusses and forecasts the ethical standards for BCI medical applications. The paper emphasizes the necessity to differentiate between the ethical issues of implantable and non-implantable BCIs, to approach the research on BCI-based \"controlling the brain\" with caution, and to establish standardized operational procedures and efficacy evaluation methods for BCI medical applications. This paper aims to provide ideas for the establishment of ethical standards in BCI medical applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"3603-3614"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2022-10-26DOI: 10.1007/s11571-022-09900-4
Efstathios Pavlidis, Fabien Campillo, Albert Goldbeter, Mathieu Desroches
{"title":"Multiple-timescale dynamics, mixed mode oscillations and mixed affective states in a model of bipolar disorder.","authors":"Efstathios Pavlidis, Fabien Campillo, Albert Goldbeter, Mathieu Desroches","doi":"10.1007/s11571-022-09900-4","DOIUrl":"10.1007/s11571-022-09900-4","url":null,"abstract":"<p><p>Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys Mol Biol 105:119-127, 2011; Pharmacopsychiatry 46:S44-S52, 2013) rests upon the notion that manic and depressive symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude (suprathreshold) oscillations and could correspond to mixed bipolar states. These rhythms are commonly referred to as mixed mode oscillations (MMOs) and they have already been studied in many different contexts by Bertram (Mathematical analysis of complex cellular activity, Springer, Cham, 2015), (Petrov et al. in J Chem Phys 97:6191-6198, 1992). In order to accurately explain these dynamics one has to apply a mathematical apparatus that makes full use of the timescale separation between variables. Here we apply the framework of multiple-timescale dynamics to the model of BD in order to understand the mathematical mechanisms underpinning the observed dynamics of changing mood. We show that the observed complex oscillations can be understood as MMOs due to a so-called <i>folded-node singularity</i>. Moreover, we explore the bifurcation structure of the system and we provide possible biological interpretations of our findings. Finally, we show the robustness of the MMOs regime to stochastic noise and we propose a minimal three-dimensional model which, with the addition of noise, exhibits similar yet purely noise-driven dynamics. The broader significance of this work is to introduce mathematical tools that could be used to analyse and potentially control future, more biologically grounded models of BD.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"3239-3257"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-10-21DOI: 10.1007/s11571-024-10180-3
Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li
{"title":"Pupil dilation and behavior as complementary measures of fear response in Mice.","authors":"Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li","doi":"10.1007/s11571-024-10180-3","DOIUrl":"10.1007/s11571-024-10180-3","url":null,"abstract":"<p><p>The precise assessment of emotional states in animals under the combined influence of multiple stimuli remains a challenge in neuroscience research. In this study, multi-dimensional assessments, including high-precision pupil tracking and behavioral analysis, were conducted to investigate the combined effects of fear stimuli and drug manipulation on emotional responses in mice. Mice exposed to foot shocks showed typical freezing and flight behaviors, but neither of these measures could effectively distinguish between dexmedetomidine, isoflurane, and saline groups. In contrast, the change in pupil diameter clearly distinguished the groups. Our results showed that fear stimulation could induce significant pupil dilation, and dexmedetomidine-isoflurane combined stimulation could significantly inhibit this response, but isoflurane anesthesia alone could not achieve good inhibitory effect. This further demonstrates the superiority of pupil data in resolving the effects of combined stimuli on emotional states and the potential of multidimensional assessments to refine animal disease models and drug evaluations.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4047-4054"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-10-03DOI: 10.1007/s11571-024-10174-1
Xiaoyu Wang, Li Lin, Lei Zhan, Xianghong Sun, Zheng Huang, Liang Zhang
{"title":"Resting state EEG delta-beta amplitude-amplitude coupling: a neural predictor of cortisol response under stress.","authors":"Xiaoyu Wang, Li Lin, Lei Zhan, Xianghong Sun, Zheng Huang, Liang Zhang","doi":"10.1007/s11571-024-10174-1","DOIUrl":"10.1007/s11571-024-10174-1","url":null,"abstract":"<p><p>Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses. Nevertheless, the role of cross-frequency coupling in stress prediction has not received sufficient attention. To examine the predictive role of resting state delta-beta CFC across the whole scalp, we obtained amplitude-amplitude coupling (AAC) and phase-amplitude coupling (PAC) from 4-minute resting state EEG of seventy-three healthy participants. The Trier Social Stress Test (TSST) was administered on a separate day to induce stress. Salivary cortisol and heart rate were recorded to measure stress responses. Utilizing cluster-based permutation analysis, the results showed that delta-beta AAC was positively correlated with cortisol increase magnitude (cluster <i>t</i> = 26.012, <i>p</i> = .020) and cortisol AUCi (cluster <i>t</i> = 23.039, <i>p</i> = .022) over parietal-occipital areas, which means that individuals with a stronger within-subject AAC demonstrated a greater cortisol response. These results suggest that AAC could be a valuable biomarker for predicting neuroendocrine activity under stress. However, no association between PAC and stress responses was found. Additionally, we did not detect the predictive effect of power in the delta or beta frequency bands on stress responses, suggesting that delta-beta AAC provides unique insights beyond single-band power. These findings enhance our understanding of the neurophysiological mechanism underpinning individual differences in stress responses and offer promising biomarkers for stress assessment and the detection of stress-related disorders.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10174-1.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"3995-4007"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-10-21DOI: 10.1007/s11571-024-10181-2
Yilin Li, Werner Sommer, Liang Tian, Changsong Zhou
{"title":"Assessing the influence of latency variability on EEG classifiers - a case study of face repetition priming.","authors":"Yilin Li, Werner Sommer, Liang Tian, Changsong Zhou","doi":"10.1007/s11571-024-10181-2","DOIUrl":"10.1007/s11571-024-10181-2","url":null,"abstract":"<p><p>Data-driven strategies have been widely used to distinguish experimental effects on single-trial EEG signals. However, how latency variability, such as within-condition jitter or latency shifts between conditions, affects the performance of EEG classifiers has not been well investigated. Without explicitly considering and disentangling such attributes of single trials, neural network-based classifiers have limitations in measuring their contributions. Inspired by domain knowledge of subcomponent latency and amplitude from traditional cognitive neuroscience, this study applies a stepwise latency correction method on single trials to control for their contributions to classifier behavior. As a case study demonstrating the value of this method, we measure repetition priming effects of faces, which induce large reaction time differences, latency shifts, and amplitude effects in averaged event-related potentials. The results show that within-condition jitter negatively impacts classifier performance, but between-condition latency shifts improve accuracy, whereas genuine amplitude differences have no significant influence. While demonstrated in the case of priming effects, this methodology can be generalized to experiments involving many kinds of time-varying signals to account for the contributions of latency variability to classifier performance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10181-2.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4055-4069"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-10-21DOI: 10.1007/s11571-024-10177-y
Debashis Das Chakladar
{"title":"Cortex level connectivity between ACT-R modules during EEG-based n-back task.","authors":"Debashis Das Chakladar","doi":"10.1007/s11571-024-10177-y","DOIUrl":"10.1007/s11571-024-10177-y","url":null,"abstract":"<p><p>Finding the synchronization between Electroencephalography (EEG) and human cognition is an essential aspect of cognitive neuroscience. Adaptive Control of Thought-Rational (ACT-R) is a widely used cognitive architecture that defines the cognitive and perceptual operations of the human mind. This study combines the ACT-R and EEG-based cortex-level connectivity to highlight the relationship between ACT-R modules during the EEG-based <i>n</i>-back task (for validating working memory performance). Initially, the source localization method is performed on the EEG signal, and the mapping between ACT-R modules and corresponding brain scouts (on the cortex surface) is performed. Once the brain scouts are identified for ACT-R modules, then those scouts are called ACT-R scouts. The linear (Granger Causality: GC) and non-linear effective connectivity (Multivariate Transfer Entropy: MTE) methods are applied over the scouts' time series data. From the GC and MTE analysis, for all <i>n</i>-back tasks, information flow is observed from the visual-to-imaginal ACT-R scout for storing the visual stimuli (i.e., input letter) in short-term memory. For 2 and 3-back tasks, causal flow exists from imaginal to retrieval ACT-R scout and vice-versa. Causal flow from procedural to the imaginal ACT-R scout is also observed for all workload levels to execute the set of productions. Identifying the relationship among ACT-R modules through scout-level connectivity in the cortical surface facilitates the effects of human cognition in terms of brain dynamics.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4033-4045"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2024-10-04DOI: 10.1007/s11571-024-10179-w
Sridevi Srinivasan, Shiny Duela Johnson
{"title":"Correction to: Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory.","authors":"Sridevi Srinivasan, Shiny Duela Johnson","doi":"10.1007/s11571-024-10179-w","DOIUrl":"10.1007/s11571-024-10179-w","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1007/s11571-023-10011-x.].</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4103"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2024-12-01Epub Date: 2023-07-11DOI: 10.1007/s11571-023-09987-3
Mikhail Rabinovich, Christian Bick, Pablo Varona
{"title":"Beyond neurons and spikes: <i>cognon</i>, the hierarchical dynamical unit of thought.","authors":"Mikhail Rabinovich, Christian Bick, Pablo Varona","doi":"10.1007/s11571-023-09987-3","DOIUrl":"10.1007/s11571-023-09987-3","url":null,"abstract":"<p><p>From the dynamical point of view, most cognitive phenomena are hierarchical, transient and sequential. Such cognitive spatio-temporal processes can be represented by a set of sequential metastable dynamical states together with their associated transitions: The state is quasi-stationary close to one metastable state before a rapid transition to another state. Hence, we postulate that metastable states are the central players in cognitive information processing. Based on the analogy of quasiparticles as elementary units in physics, we introduce here the quantum of cognitive information dynamics, which we term \"cognon\". A cognon, or dynamical unit of thought, is represented by a robust finite chain of metastable neural states. Cognons can be organized at multiple hierarchical levels and coordinate complex cognitive information representations. Since a cognon is an abstract conceptualization, we link this abstraction to brain sequential dynamics that can be measured using common modalities and argue that cognons and brain rhythms form binding spatiotemporal complexes to keep simultaneous dynamical information which relate the 'what', 'where' and 'when'.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3327-3335"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44622024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}