Cognitive Neurodynamics最新文献

筛选
英文 中文
High-altitude exposure leads to increased modularity of brain functional network with the increased occupation of attention resources in early processing of visual working memory 高海拔暴露导致大脑功能网络模块化增加,在视觉工作记忆的早期处理过程中增加了对注意力资源的占用
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-15 DOI: 10.1007/s11571-024-10091-3
Jing Zhou, Nian-Nian Wang, Xiao-Yan Huang, Rui Su, Hao Li, Hai-Lin Ma, Ming Liu, De-Long Zhang
{"title":"High-altitude exposure leads to increased modularity of brain functional network with the increased occupation of attention resources in early processing of visual working memory","authors":"Jing Zhou, Nian-Nian Wang, Xiao-Yan Huang, Rui Su, Hao Li, Hai-Lin Ma, Ming Liu, De-Long Zhang","doi":"10.1007/s11571-024-10091-3","DOIUrl":"https://doi.org/10.1007/s11571-024-10091-3","url":null,"abstract":"<p>Working memory is a complex cognitive system that temporarily maintains purpose-relevant information during human cognition performance. Working memory performance has also been found to be sensitive to high-altitude exposure. This study used a multilevel change detection task combined with Electroencephalogram data to explore the mechanism of working memory change from high-altitude exposure. When compared with the sea-level population, the performance of the change detection task with 5 memory load levels was measured in the Han population living in high-altitude areas, using the event-related potential analysis and task-related connectivity network analysis. The topological analysis of the brain functional network showed that the normalized modularity of the high-altitude group was higher in the memory maintenance phase. Event-related Potential analysis showed that the peak latencies of P1 and N1 components of the high-altitude group were significantly shorter in the occipital region, which represents a greater attentional bias in visual early processing. Under the condition of high memory loads, the high-altitude group had a larger negative peak in N2 amplitude compared to the low-altitude group, which may imply more conscious processing in visual working memory. The above results revealed that the visual working memory change from high-altitude exposure might be derived from the attentional bias and the more conscious processing in the early processing stage of visual input, which is accompanied by the increase of the modularity of the brain functional network. This may imply that the attentional bias in the early processing stages have been influenced by the increased modularity of the functional brain networks induced by high-altitude exposure.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"85 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adult neurogenesis in the hippocampal dentate gyrus affects sparsely synchronized rhythms, associated with pattern separation and integration 海马齿状回的成年神经发生影响稀疏同步节律,与模式分离和整合有关
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-12 DOI: 10.1007/s11571-024-10089-x
{"title":"Adult neurogenesis in the hippocampal dentate gyrus affects sparsely synchronized rhythms, associated with pattern separation and integration","authors":"","doi":"10.1007/s11571-024-10089-x","DOIUrl":"https://doi.org/10.1007/s11571-024-10089-x","url":null,"abstract":"<h3>Abstract</h3> <p>We are concerned about sparsely synchronized rhythms (SSRs), associated with diverse cognitive functions, in the hippocampal dentate gyrus. Distinctly, adult-born immature GCs (imGCs) emerge through neurogenesis, in addition to the mature granule cells (mGCs) (emerged in the developmental stage). In prior work, these mGCs and imGCs were found to exhibit their distinct roles in pattern separation and integration for encoding cortical inputs, respectively. But, the underlying dynamical mechanismremains unclear. In this paper, we first study influence of the young adult-born imGCs on emergence of SSRs in the populations of the mGCs and the imGCs; population and individual firing behaviors in the SSRs are intensively studied. We then examine how the SSRs play a role in the underlying mechanism for pattern separation and integration. Particularly, quantitative relationship between SSRs of the mGCs and the imGCs and their pattern separation and integration is investigated.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"31 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The design and implementation of multi-character classification scheme based on EEG signals of visual imagery 基于视觉图像脑电信号的多字符分类方案的设计与实现
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-09 DOI: 10.1007/s11571-024-10087-z
Hongguang Pan, Wei Song, Li Li, Xuebin Qin
{"title":"The design and implementation of multi-character classification scheme based on EEG signals of visual imagery","authors":"Hongguang Pan, Wei Song, Li Li, Xuebin Qin","doi":"10.1007/s11571-024-10087-z","DOIUrl":"https://doi.org/10.1007/s11571-024-10087-z","url":null,"abstract":"<p>In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"54 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute and chronic effects of exercise intensity on cognitive functions of fastball athletes 运动强度对快球运动员认知功能的急性和慢性影响
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-08 DOI: 10.1007/s11571-024-10083-3
Sonia Kapur, Ghosha Mukeshbhai Joshi
{"title":"Acute and chronic effects of exercise intensity on cognitive functions of fastball athletes","authors":"Sonia Kapur, Ghosha Mukeshbhai Joshi","doi":"10.1007/s11571-024-10083-3","DOIUrl":"https://doi.org/10.1007/s11571-024-10083-3","url":null,"abstract":"<p>Exercise induced Cognitive Function is an area needed in competitive fast ball sports that has stimulated interests of researchers due to its promising applicability in the field. It was noticed that although previous studies have suggested a role of exercise in facilitating cognitive performance, little is known regarding how to maximize these benefits. The study is undertaken to understand the effects of two types of aerobic training i.e., High Intensity Interval Exercise (HIIE) and Moderate Intensity Continuous Exercise (MCE) on executive function. For the assessment of cognition, after a four-week protocol, the Vienna Test System, a computerized assessment tool developed by Schuhfried GmbH (Moedling, Austria) is used for a defined universe of selected 20 athletes from various fast ball sports such as cricket, football, handball and volleyball. Statistical Analysis of Repeated Measured ANOVA along with post hoc test was done using SPSS version 21. Level of significance was kept at 5% with 95% study power. Collectively three variables, namely Sum of correct reactions, Sum of incorrect reactions and Sum of incorrect non-reactions; revealed improvement in attention, inhibitory function as well as executive function (<i>p</i> &lt; 0.05). For fast ball athletes, the present study is suggestive of including MCE or HIIE programme in their training for 3 sessions/week; in order to optimize the improvement in cognitive level. The study can potentially guide every sports medicine team member, in order to develop an effective exercise protocol to improve the physiological as well as psychological capabilities of the athletes.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task demand modulates the effects of reward learning on emotional stimuli 任务需求调节奖励学习对情绪刺激的影响
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-06 DOI: 10.1007/s11571-024-10082-4
Ning-Xuan Chen, Ping Wei
{"title":"Task demand modulates the effects of reward learning on emotional stimuli","authors":"Ning-Xuan Chen, Ping Wei","doi":"10.1007/s11571-024-10082-4","DOIUrl":"https://doi.org/10.1007/s11571-024-10082-4","url":null,"abstract":"<p>The current study used event-related potentials (ERPs) to examine the ability of task demand in modulating the effect of reward association on the processing of emotional faces. In the learning phase, a high or low reward probability was paired with male or female facial photos of angry, happy, or neutral expressions. Then, in the test phase, task demand was manipulated by asking participants to discriminate the emotionality or the gender of the pre-learned face with no reward at stake. The ERP results in the test phase revealed that the fronto-central N1 (60–100 ms) and the VPP (160–210 ms) components were sensitive to the interaction between reward and emotion, in that the differences between the mean amplitudes for high- and low-reward conditions were significantly larger in the neutral face and angry face conditions than in the happy face condition. Moreover, reward association and task demand showed a significant interaction over the right hemisphere for the N170 component (140–180 ms), with amplitude difference between high- and low-reward conditions being larger in the emotion task than that in the gender task. The later N2pc component exhibited an interaction between task demand and emotionality, in that happy faces elicited larger N2pc difference waves than angry and neutral faces did in the emotion task, but neutral faces elicited larger N2pc difference waves than angry faces did in the gender task. The N2pc effect aligned with behavioral performance. These results suggest that reward association acts as an ‘emotional tagging’ to imbue neutral or angry faces with motivational significance at early time windows. Task demand functions in a top-down way to modulate the deployment of attentional resources at the later attentional selection stage, but does not affect the early automatic processing of either emotion or reward association.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear and nonlinear analysis of multimodal physiological data for affective arousal recognition 对多模态生理数据进行线性和非线性分析以识别情感唤醒
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-06 DOI: 10.1007/s11571-024-10090-4
Ali Khaleghi, Kian Shahi, Maryam Saidi, Nafiseh Babaee, Razieh Kaveh, Amin Mohammadian
{"title":"Linear and nonlinear analysis of multimodal physiological data for affective arousal recognition","authors":"Ali Khaleghi, Kian Shahi, Maryam Saidi, Nafiseh Babaee, Razieh Kaveh, Amin Mohammadian","doi":"10.1007/s11571-024-10090-4","DOIUrl":"https://doi.org/10.1007/s11571-024-10090-4","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>In this work we intend to design a system to classify human arousal at five levels (i.e., five stress levels) using four peripheral bio signals including photo-plethysmography measurements (PPG), galvanic skin response (GSR), thorax respiration (TR) and abdominal respiration (AR).</p><h3 data-test=\"abstract-sub-heading\">Method</h3><p>A total of 98 young people voluntarily participated in this study, including 65 men and 33 women with an average age of 24.48 ± 4.26 years. We induced five levels of mental stress in subjects through the Stroop test. A range of physiological features from different analysis domains, including statistical, frequency, and geometrical analyzes, as well as recurrence quantification analysis (RQA) and detrended fluctuation analysis (DFA) were extracted to find out the best arousal-related features and to correlate them with arousal states. Classification of the five arousal levels is performed by a simple naïve Bayes classifier.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Accuracies of 58.45%, 57.1% and 69.13% were obtained using linear features, nonlinear features and a combination of them, respectively. The combination of linear and nonlinear features resulted in the largest average accuracy of 69.13%, ICC of 88.12% and F1 of 69.43% values in the classification of five levels of mental stress.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This paper suggested that combining linear and nonlinear dynamic methods for the analysis of physiological data could help improve the accuracy of the recognition of arousal levels. However, it should be noted that combining multiple modalities (here, PPG, GSR and respiration modalities) by equally weighting them may not always be a good approach to improve accuracy.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"106 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple time delay induced Hopf bifurcation of a cortex - basal ganglia model for Parkinson’s Disease 帕金森病皮层-基底神经节模型的多重时延诱导霍普夫分岔
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-02 DOI: 10.1007/s11571-024-10071-7
Qiaohu Zhang, Quansheng Liu, Yuanhong Bi
{"title":"Multiple time delay induced Hopf bifurcation of a cortex - basal ganglia model for Parkinson’s Disease","authors":"Qiaohu Zhang, Quansheng Liu, Yuanhong Bi","doi":"10.1007/s11571-024-10071-7","DOIUrl":"https://doi.org/10.1007/s11571-024-10071-7","url":null,"abstract":"<p>Exploring the origin of beta - band oscillation in the cortex - basal ganglia model plays an important role in understanding the mechanism of Parkinson’s disease. In this paper, we investigate the effect of three synaptic transmission time delays in the subthalamic nucleus(STN) - the globus pallidus external segment(GPe) loop, the excitatory neurons in the cortex(EXN) - the inhibitory neurons in the cortex(INN) loop and EXN - STN loop on critical conditions of occurrence of beta - band oscillation through Hopf bifurcation theory including linear stability analysis, center manifold theorem and normal form analysis. Our results reveal that suitable transmission time delay can induce beta - band oscillation through Hopf bifurcation, and the critical condition under which Hopf bifurcation occurs is more sensitive to the transmission time delay in EXN - STN loop <span>(T_3)</span>, where if <span>(T_3 &gt; 0.00185)</span>, beta - band oscillation always occurs for any transmission time delay in STN - GPe, EXN - INN loops. Our theoretical analyses provide some ideas for the future research of Parkinson’s disease.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherence-based channel selection and Riemannian geometry features for magnetoencephalography decoding 基于相干的信道选择和黎曼几何特征的脑磁图解码
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-01 DOI: 10.1007/s11571-024-10085-1
Chao Tang, Tianyi Gao, Gang Wang, Badong Chen
{"title":"Coherence-based channel selection and Riemannian geometry features for magnetoencephalography decoding","authors":"Chao Tang, Tianyi Gao, Gang Wang, Badong Chen","doi":"10.1007/s11571-024-10085-1","DOIUrl":"https://doi.org/10.1007/s11571-024-10085-1","url":null,"abstract":"<p>Magnetoencephalography (MEG) records the extremely weak magnetic fields on the surface of the scalp through highly sensitive sensors. Multi-channel MEG data provide higher spatial and temporal resolution when measuring brain activities, and can be applied for brain-computer interfaces as well. However, a large number of channels leads to high computational complexity and can potentially impact decoding accuracy. To improve the accuracy of MEG decoding, this paper proposes a new coherence-based channel selection method that effectively identifies task-relevant channels, reducing the presence of noisy and redundant information. Riemannian geometry is then used to extract effective features from selected channels of MEG data. Finally, MEG decoding is achieved by training a support vector machine classifier with the Radial Basis Function kernel. Experiments were conducted on two public MEG datasets to validate the effectiveness of the proposed method. The results from Dataset 1 show that Riemannian geometry achieves higher classification accuracy (compared to common spatial patterns and power spectral density) in the single-subject visual decoding task. Moreover, coherence-based channel selection significantly (<i>P</i> = 0.0002) outperforms the use of all channels. Moving on to Dataset 2, the results reveal that coherence-based channel selection is also significantly (<i>P</i> &lt;0.0001) superior to all channels and channels around C3 and C4 in cross-session mental imagery decoding tasks. Additionally, the proposed method outperforms state-of-the-art methods in motor imagery tasks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"99 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-selected versus imposed running intensity and the acute effects on mood, cognition, and (a)periodic brain activity 自选与强制跑步强度以及对情绪、认知和(a)周期性大脑活动的急性影响
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-03-01 DOI: 10.1007/s11571-024-10084-2
Leonard Braunsmann, Finja Beermann, Heiko K. Strüder, Vera Abeln
{"title":"Self-selected versus imposed running intensity and the acute effects on mood, cognition, and (a)periodic brain activity","authors":"Leonard Braunsmann, Finja Beermann, Heiko K. Strüder, Vera Abeln","doi":"10.1007/s11571-024-10084-2","DOIUrl":"https://doi.org/10.1007/s11571-024-10084-2","url":null,"abstract":"<p>The beneficial psychological effects of exercise might be explained by self-determination theory and autonomy. However, the underlying neurophysiological mechanisms are even less elucidated. Previously neglected, aperiodic (1/f) brain activity is suggested to indicate enhanced cortical inhibition when the slope is steeper. This is thought to be associated with an increased cognitive performance. Therefore, we hypothesize that running with a self-selected intensity and thus given autonomy leads to stronger neural inhibition accompanied by psychological improvements. Twenty-nine runners performed two 30-min runs. First, they chose their individual feel-good intensity (self-selected run; SR). After a 4-weeks washout, the same speed was blindly prescribed (imposed run; IR). Acute effects on mood (Feeling Scale, Felt Arousal Scale, MoodMeter®), cognition (d2-R, digit span test) and electrocortical activity (slope, offset, 1/f-corrected alpha and low beta band) were analyzed before and after the runs. Both runs had an equal physical workload and improved mood in the Felt Arousal Scale, but not in the Feeling Scale or MoodMeter®. Cognitive performance improved after both runs in the d2-R, while it remained stable in the digit span test after SR, but decreased after IR. After running, the aperiodic slope was steeper, and the offset was reduced. Alpha activity increased after SR only, while low beta activity decreased after both conditions. The aperiodic features partially correlated with mood and cognition. SR was not clearly superior regarding psychological effects. Reduced aperiodic brain activity indicates enhanced neural inhibition after both runs. The 1/f-corrected alpha band may emphasize a different neural processing between both runs.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"14 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the dynamics of a flux coupled Chialvo neurons and the existence of extreme events 揭示通量耦合 Chialvo 神经元的动态和极端事件的存在
IF 3.7 3区 工程技术
Cognitive Neurodynamics Pub Date : 2024-02-28 DOI: 10.1007/s11571-024-10079-z
Sathiyadevi Kanagaraj, Premraj Durairaj, Anitha Karthikeyan, Karthikeyan Rajagopal
{"title":"Unraveling the dynamics of a flux coupled Chialvo neurons and the existence of extreme events","authors":"Sathiyadevi Kanagaraj, Premraj Durairaj, Anitha Karthikeyan, Karthikeyan Rajagopal","doi":"10.1007/s11571-024-10079-z","DOIUrl":"https://doi.org/10.1007/s11571-024-10079-z","url":null,"abstract":"<p>To illustrate the occurrences of extreme events in the neural system we consider a pair of Chialvo neuron maps. Importantly, we explore the dynamics of the proposed system by including a flux term between the neurons. Primarily, the dynamical behaviors of the coupled Chialvo neurons are examined using the Lyapunov spectrum and bifurcation analysis. We find the transitions between the periodic and chaotic dynamics in relation to the injected ion current of the first and second neurons and the flux coupling strength. It is interesting to note that, the extreme events can occur in the chaotic zone for some parameters. The analysis is then extended to a network of Chialvo neurons with various network connectivities. We discover that coexisting coherent and incoherent behaviour can arise and that nodes in the network can exhibit extreme event features. The findings of this study could help to better understand the rare large-amplitude events that occur in neural networks, which can help detect and prevent a variety of neurological disorders.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"84 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信