构建透明可解释的医学图像分类人工智能模型。

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-09-20 DOI:10.1007/s11571-025-10343-w
Binbin Wen, Yihang Wu, Tareef Daqqaq, Ahmad Chaddad
{"title":"构建透明可解释的医学图像分类人工智能模型。","authors":"Binbin Wen, Yihang Wu, Tareef Daqqaq, Ahmad Chaddad","doi":"10.1007/s11571-025-10343-w","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into medicine is remarkable, offering advanced diagnostic and therapeutic possibilities. However, the inherent opacity of complex AI models presents significant challenges to their clinical practicality. This paper focuses primarily on investigating the application of explainable artificial intelligence (XAI) methods, with the aim of making AI decisions transparent and interpretable. Our research focuses on implementing simulations using various medical datasets to elucidate the internal workings of the XAI model. These dataset-driven simulations demonstrate how XAI effectively interprets AI predictions, thus improving the decision-making process for healthcare professionals. In addition to a survey of the main XAI methods and simulations, ongoing challenges in the XAI field are discussed. The study highlights the need for the continuous development and exploration of XAI, particularly from the perspective of diverse medical datasets, to promote its adoption and effectiveness in the healthcare domain. Our code is available at https://github.com/AIPMLab/XAI_-review-2024.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"149"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards a transparent and interpretable AI model for medical image classifications.\",\"authors\":\"Binbin Wen, Yihang Wu, Tareef Daqqaq, Ahmad Chaddad\",\"doi\":\"10.1007/s11571-025-10343-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of artificial intelligence (AI) into medicine is remarkable, offering advanced diagnostic and therapeutic possibilities. However, the inherent opacity of complex AI models presents significant challenges to their clinical practicality. This paper focuses primarily on investigating the application of explainable artificial intelligence (XAI) methods, with the aim of making AI decisions transparent and interpretable. Our research focuses on implementing simulations using various medical datasets to elucidate the internal workings of the XAI model. These dataset-driven simulations demonstrate how XAI effectively interprets AI predictions, thus improving the decision-making process for healthcare professionals. In addition to a survey of the main XAI methods and simulations, ongoing challenges in the XAI field are discussed. The study highlights the need for the continuous development and exploration of XAI, particularly from the perspective of diverse medical datasets, to promote its adoption and effectiveness in the healthcare domain. Our code is available at https://github.com/AIPMLab/XAI_-review-2024.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"149\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10343-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10343-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)与医学的融合引人注目,提供了先进的诊断和治疗可能性。然而,复杂人工智能模型固有的不透明性对其临床实用性提出了重大挑战。本文主要研究可解释人工智能(XAI)方法的应用,目的是使人工智能决策透明和可解释。我们的研究重点是利用各种医疗数据集实现模拟,以阐明XAI模型的内部工作原理。这些数据集驱动的模拟演示了XAI如何有效地解释AI预测,从而改善医疗保健专业人员的决策过程。除了对主要的XAI方法和模拟进行调查外,还讨论了XAI领域面临的挑战。该研究强调了持续开发和探索XAI的必要性,特别是从不同医疗数据集的角度,以促进其在医疗保健领域的采用和有效性。我们的代码可在https://github.com/AIPMLab/XAI_-review-2024上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a transparent and interpretable AI model for medical image classifications.

The integration of artificial intelligence (AI) into medicine is remarkable, offering advanced diagnostic and therapeutic possibilities. However, the inherent opacity of complex AI models presents significant challenges to their clinical practicality. This paper focuses primarily on investigating the application of explainable artificial intelligence (XAI) methods, with the aim of making AI decisions transparent and interpretable. Our research focuses on implementing simulations using various medical datasets to elucidate the internal workings of the XAI model. These dataset-driven simulations demonstrate how XAI effectively interprets AI predictions, thus improving the decision-making process for healthcare professionals. In addition to a survey of the main XAI methods and simulations, ongoing challenges in the XAI field are discussed. The study highlights the need for the continuous development and exploration of XAI, particularly from the perspective of diverse medical datasets, to promote its adoption and effectiveness in the healthcare domain. Our code is available at https://github.com/AIPMLab/XAI_-review-2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信