Ali Turab, Josué-Antonio Nescolarde-Selva, Farhan Ullah, Andrés Montoyo, Cicik Alfiniyah, Wutiphol Sintunavarat, Doaa Rizk, Shujaat Ali Zaidi
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Deep neural networks and stochastic methods for cognitive modeling of rat behavioral dynamics in <ns0:math><ns0:mi>T</ns0:mi></ns0:math> -mazes.","authors":"Ali Turab, Josué-Antonio Nescolarde-Selva, Farhan Ullah, Andrés Montoyo, Cicik Alfiniyah, Wutiphol Sintunavarat, Doaa Rizk, Shujaat Ali Zaidi","doi":"10.1007/s11571-025-10247-9","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling animal decision-making requires mathematical rigor and computational analysis to capture underlying cognitive mechanisms. This study presents a cognitive model for rat decision-making behavior in <math><mi>T</mi></math> -mazes by combining stochastic methods with deep neural architectures. The model adapts Wyckoff's stochastic framework, originally grounded in Bush's discrimination learning theory, to describe probabilistic transitions between directional choices under reinforcement contingencies. The existence and uniqueness of solutions are demonstrated via fixed-point theorems, ensuring the formulation is well-posed. The asymptotic properties of the system are examined under boundary conditions to understand the convergence behavior of decision probabilities across trials. Empirical validation is performed using Monte Carlo simulations to compare expected trajectories with the model's predictive output. The dataset comprises spatial trajectory recordings of rats navigating toward food rewards under controlled experimental protocols. Trajectories are preprocessed through statistical filtering, augmented to address data imbalance, and embedded using t-SNE to visualize separability across behavioral states. A hybrid convolutional-recurrent neural network (CNN-LSTM) is trained on these representations and achieves a classification accuracy of 82.24%, outperforming conventional machine learning models, including support vector machines and random forests. In addition to discrete choice prediction, the network reconstructs continuous paths, enabling full behavioral sequence modeling from partial observations. The integration of stochastic dynamics and deep learning develops a computational basis for analyzing spatial decision-making in animal behavior. The proposed approach contributes to computational models of cognition by linking observable behavior to internal processes in navigational tasks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"66"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10247-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling animal decision-making requires mathematical rigor and computational analysis to capture underlying cognitive mechanisms. This study presents a cognitive model for rat decision-making behavior in -mazes by combining stochastic methods with deep neural architectures. The model adapts Wyckoff's stochastic framework, originally grounded in Bush's discrimination learning theory, to describe probabilistic transitions between directional choices under reinforcement contingencies. The existence and uniqueness of solutions are demonstrated via fixed-point theorems, ensuring the formulation is well-posed. The asymptotic properties of the system are examined under boundary conditions to understand the convergence behavior of decision probabilities across trials. Empirical validation is performed using Monte Carlo simulations to compare expected trajectories with the model's predictive output. The dataset comprises spatial trajectory recordings of rats navigating toward food rewards under controlled experimental protocols. Trajectories are preprocessed through statistical filtering, augmented to address data imbalance, and embedded using t-SNE to visualize separability across behavioral states. A hybrid convolutional-recurrent neural network (CNN-LSTM) is trained on these representations and achieves a classification accuracy of 82.24%, outperforming conventional machine learning models, including support vector machines and random forests. In addition to discrete choice prediction, the network reconstructs continuous paths, enabling full behavioral sequence modeling from partial observations. The integration of stochastic dynamics and deep learning develops a computational basis for analyzing spatial decision-making in animal behavior. The proposed approach contributes to computational models of cognition by linking observable behavior to internal processes in navigational tasks.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.