BrainNeXt: novel lightweight CNN model for the automated detection of brain disorders using MRI images.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-03-22 DOI:10.1007/s11571-025-10235-z
Melahat Poyraz, Ahmet Kursad Poyraz, Yusuf Dogan, Selva Gunes, Hasan S Mir, Jose Kunnel Paul, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Filippo Molinari, Rajendra Acharya
{"title":"BrainNeXt: novel lightweight CNN model for the automated detection of brain disorders using MRI images.","authors":"Melahat Poyraz, Ahmet Kursad Poyraz, Yusuf Dogan, Selva Gunes, Hasan S Mir, Jose Kunnel Paul, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Filippo Molinari, Rajendra Acharya","doi":"10.1007/s11571-025-10235-z","DOIUrl":null,"url":null,"abstract":"<p><p>The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"53"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10235-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.

BrainNeXt:使用MRI图像自动检测脑部疾病的新型轻量级CNN模型。
本研究的主要目的是提出一种新的卷积神经网络,名为BrainNeXt,用于使用磁共振图像(MRI)图像自动检测大脑疾病。此外,我们的目标是研究我们提出的网络在各种医疗应用中的性能。为了获得高/鲁棒的图像分类性能,我们收集了一个新的MRI数据集,属于四个类别:(1)阿尔茨海默病,(2)慢性缺血,(3)多发性硬化症和(4)对照。受ConvNeXt的启发,我们将BrainNeXt设计为一个轻量级的分类模型,并结合了Swin Transformers Tiny模型的结构元素。通过在收集的数据集上训练我们的模型,得到一个预训练的BrainNeXt模型。此外,我们还提出了一种基于预训练的BrainNeXt的特征工程(FE)方法,该方法从固定大小的补丁中提取特征。在特征选择阶段,采用邻域分量分析选择器选择最具判别性/信息量的特征。作为基于patch的有限元方法的分类器,我们使用了支持向量机分类器。我们推荐的BrainNeXt方法在训练和验证方面的准确率分别为100%和91.35%。推荐的模型获得了94.21%的测试分类准确率。为了进一步提高分类性能,我们提出了一种基于patch的DFE方法,该方法的测试准确率达到99.73%。所得结果在测试数据集上的准确率超过90%,证明了所提模型的有效性和较高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信