Melahat Poyraz, Ahmet Kursad Poyraz, Yusuf Dogan, Selva Gunes, Hasan S Mir, Jose Kunnel Paul, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Filippo Molinari, Rajendra Acharya
{"title":"BrainNeXt: novel lightweight CNN model for the automated detection of brain disorders using MRI images.","authors":"Melahat Poyraz, Ahmet Kursad Poyraz, Yusuf Dogan, Selva Gunes, Hasan S Mir, Jose Kunnel Paul, Prabal Datta Barua, Mehmet Baygin, Sengul Dogan, Turker Tuncer, Filippo Molinari, Rajendra Acharya","doi":"10.1007/s11571-025-10235-z","DOIUrl":null,"url":null,"abstract":"<p><p>The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"53"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10235-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.