Ming Li, Shengzhe Zhou, Qiang Yu, Chenxi Wang, Haoyi Chen, Yingying Ma, Huizhen Fan, Tao Ni, Min Lu, Min Yao
{"title":"A sprayable TQ/Ce6@SAB/F-gel for accelerating wound healing via hypoxia-tolerant photodynamic therapy and immune-metabolic pathway.","authors":"Ming Li, Shengzhe Zhou, Qiang Yu, Chenxi Wang, Haoyi Chen, Yingying Ma, Huizhen Fan, Tao Ni, Min Lu, Min Yao","doi":"10.1016/j.biomaterials.2025.123602","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic diabetic wounds are characterized by hypoxia, persistent microbial infection, and impaired healing, posing significant challenges to conventional therapies. Herein, we present a novel sprayable double-network hydrogel platform designed to achieve efficient antimicrobial activity and accelerated wound repair under hypoxic conditions by leveraging a type I photodynamic therapy (PDT) and immune-metabolic regulatory strategy. Specifically, we employ salvianolic acid B (SAB) to form a self-assembled hydrogel (SAB-gel) and incorporate fibrin to construct a robust and acidic double-network SAB/F-gel with enhanced mechanical strength and acidic environment. Concurrently, thymoquinone (TQ) and chlorin e6 (Ce6) are self-assembled via hydrophobic interactions to form TQ/Ce6 nanoparticles (TQ/Ce6 NPs) and embedded in the SAB/F-gel, to fabricate the TQ/Ce6@SAB/F-gel. Under low-oxygen conditions, TQ acts as an electron-transfer mediator, enabling Ce6 to generate abundant superoxide anions (·O<sub>2</sub><sup>-</sup>) via type I PDT under red light (RL) irradiation. These ·O<sub>2</sub><sup>-</sup> are subsequently converted into hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and hydroxyl radicals (·OH) in the acidic environment provided by acidic SAB/F-gel, thereby reducing the dependence on oxygen and maintaining potent antimicrobial efficacy against MRSA, Pseudomonas aeruginosa (Pa), Acinetobacter baumannii (Ab), Escherichia coli (E. coli) and Candida albicans (Ca). In vitro experiments demonstrated that TQ/Ce6@SAB/F-gel regulates macrophage M2 polarization and promotes endothelial cell proliferation, migration, and tube formation via the immune-metabolic regulatory pathways. When applied to MRSA-infected diabetic wounds in mice, the hydrogel in combination with RL completely eradicated bacteria, promoted collagen deposition and angiogenesis, and significantly accelerated wound closure, as demonstrated by histological examination and transcriptome sequencing. This work offers a versatile, biocompatible, and oxygen-independent PDT-based hydrogel system for the treatment of refractory infected diabetic wounds, offering potential for clinical translation and improved patient outcomes.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"123602"},"PeriodicalIF":12.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2025.123602","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic diabetic wounds are characterized by hypoxia, persistent microbial infection, and impaired healing, posing significant challenges to conventional therapies. Herein, we present a novel sprayable double-network hydrogel platform designed to achieve efficient antimicrobial activity and accelerated wound repair under hypoxic conditions by leveraging a type I photodynamic therapy (PDT) and immune-metabolic regulatory strategy. Specifically, we employ salvianolic acid B (SAB) to form a self-assembled hydrogel (SAB-gel) and incorporate fibrin to construct a robust and acidic double-network SAB/F-gel with enhanced mechanical strength and acidic environment. Concurrently, thymoquinone (TQ) and chlorin e6 (Ce6) are self-assembled via hydrophobic interactions to form TQ/Ce6 nanoparticles (TQ/Ce6 NPs) and embedded in the SAB/F-gel, to fabricate the TQ/Ce6@SAB/F-gel. Under low-oxygen conditions, TQ acts as an electron-transfer mediator, enabling Ce6 to generate abundant superoxide anions (·O2-) via type I PDT under red light (RL) irradiation. These ·O2- are subsequently converted into hydrogen peroxide (H2O2) and hydroxyl radicals (·OH) in the acidic environment provided by acidic SAB/F-gel, thereby reducing the dependence on oxygen and maintaining potent antimicrobial efficacy against MRSA, Pseudomonas aeruginosa (Pa), Acinetobacter baumannii (Ab), Escherichia coli (E. coli) and Candida albicans (Ca). In vitro experiments demonstrated that TQ/Ce6@SAB/F-gel regulates macrophage M2 polarization and promotes endothelial cell proliferation, migration, and tube formation via the immune-metabolic regulatory pathways. When applied to MRSA-infected diabetic wounds in mice, the hydrogel in combination with RL completely eradicated bacteria, promoted collagen deposition and angiogenesis, and significantly accelerated wound closure, as demonstrated by histological examination and transcriptome sequencing. This work offers a versatile, biocompatible, and oxygen-independent PDT-based hydrogel system for the treatment of refractory infected diabetic wounds, offering potential for clinical translation and improved patient outcomes.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.