Self-supported DNA hydrogel facilitates microenvironment remodeling and cartilage repair to prevent osteoarthritis progression via an ambidextrous strategy.
Yixin Liu, Xinjian Yang, Ya Miao, Taoping Chen, Wenyan Gao, Guoqiang Zhou, Guang Jia, Xiaosong Yang, Jinchao Zhang, Yi Jin
{"title":"Self-supported DNA hydrogel facilitates microenvironment remodeling and cartilage repair to prevent osteoarthritis progression via an ambidextrous strategy.","authors":"Yixin Liu, Xinjian Yang, Ya Miao, Taoping Chen, Wenyan Gao, Guoqiang Zhou, Guang Jia, Xiaosong Yang, Jinchao Zhang, Yi Jin","doi":"10.1016/j.biomaterials.2025.123595","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), a prevalent degenerative joint disease, currently lacks effective therapeutic options beyond symptomatic relief. Persistent inflammation and impaired cartilage repair accelerate the disease progression. The enzyme inducible nitric oxide synthase (iNOS) contributes to OA by producing nitric oxide (NO), which intensifies inflammation and inhibits cartilage regeneration. Traditional iNOS inhibitors have demonstrated limited efficacy due to inadequate targeted release and uncoordinated control over inflammation. In this study, we developed a self-supported DNAzyme-based DNA hydrogel using rolling circle amplification (RCA) technology to deliver iNOS-targeting DNAzymes and bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) in response to inflammation. The hydrogel incorporates triglycerol monostearate nanoparticles (TGMS NPs), which degrade under high matrix metalloproteinase (MMP) levels in OA joints, thereby triggering the release of the DNAzymes and exosomes with precision. This targeted delivery modulates the inflammatory microenvironment by reducing pro-inflammatory NO production and supports chondrogenesis by promoting M2 macrophage polarization. In vitro and in vivo analyses reveal that the hydrogel significantly reduces inflammatory cytokine levels, enhances chondrocyte proliferation, and restores extracellular matrix integrity, ultimately slowing OA progression. This smart hydrogel offers a promising ambidextrous strategy for microenvironment modulation and cartilage regeneration, potentially advancing OA treatment.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"123595"},"PeriodicalIF":12.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2025.123595","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, currently lacks effective therapeutic options beyond symptomatic relief. Persistent inflammation and impaired cartilage repair accelerate the disease progression. The enzyme inducible nitric oxide synthase (iNOS) contributes to OA by producing nitric oxide (NO), which intensifies inflammation and inhibits cartilage regeneration. Traditional iNOS inhibitors have demonstrated limited efficacy due to inadequate targeted release and uncoordinated control over inflammation. In this study, we developed a self-supported DNAzyme-based DNA hydrogel using rolling circle amplification (RCA) technology to deliver iNOS-targeting DNAzymes and bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) in response to inflammation. The hydrogel incorporates triglycerol monostearate nanoparticles (TGMS NPs), which degrade under high matrix metalloproteinase (MMP) levels in OA joints, thereby triggering the release of the DNAzymes and exosomes with precision. This targeted delivery modulates the inflammatory microenvironment by reducing pro-inflammatory NO production and supports chondrogenesis by promoting M2 macrophage polarization. In vitro and in vivo analyses reveal that the hydrogel significantly reduces inflammatory cytokine levels, enhances chondrocyte proliferation, and restores extracellular matrix integrity, ultimately slowing OA progression. This smart hydrogel offers a promising ambidextrous strategy for microenvironment modulation and cartilage regeneration, potentially advancing OA treatment.
骨关节炎(OA)是一种常见的退行性关节疾病,目前除了症状缓解之外缺乏有效的治疗选择。持续的炎症和受损的软骨修复加速了疾病的进展。酶诱导型一氧化氮合酶(iNOS)通过产生一氧化氮(NO)促进OA,从而加剧炎症并抑制软骨再生。传统的iNOS抑制剂由于不充分的靶向释放和对炎症的不协调控制而显示出有限的疗效。在这项研究中,我们开发了一种基于dnazyme的自我支持的DNA水凝胶,使用rolling circle amplification (RCA)技术来递送靶向inos的DNAzymes和骨髓间充质干细胞衍生的外泌体(BMSC-exos),以应对炎症。该水凝胶含有甘油三酯单硬脂酸纳米颗粒(TGMS NPs),该纳米颗粒在OA关节的高基质金属蛋白酶(MMP)水平下降解,从而精确触发DNAzymes和外泌体的释放。这种靶向递送通过减少促炎NO的产生来调节炎症微环境,并通过促进M2巨噬细胞极化来支持软骨形成。体外和体内分析表明,水凝胶可显著降低炎症细胞因子水平,增强软骨细胞增殖,恢复细胞外基质完整性,最终减缓OA进展。这种智能水凝胶为微环境调节和软骨再生提供了一种有前途的双灵巧策略,有可能推进OA治疗。
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.