{"title":"通过CWI-MAPK通路调控对抗多重耐药真菌感染的二元植物化学水凝胶的oh优化设计","authors":"Shuchang Yao, Qi Han, Xuemei Huang, Jihui Lu, Wenmin Pi, Zhijia Wang, Yihang Zhao, Fayuan Guo, Xinru Tan, Liuyang Zhang, Luping Yang, Xiang Zhang, Xiaowen Wang, Penglong Wang","doi":"10.1016/j.biomaterials.2025.123598","DOIUrl":null,"url":null,"abstract":"<p><p>The unique design of low molecular weight hydrogels (LMWH) without carriers has sparked great interest in biomedical applications, yet the construction of binary LMWH remains elusive due to the lack of a theoretical framework linking structure and assembly. Hence, we proposed an innovative theoretical framework, in which a subtle -OH change in parent structures triggers the interconversion of nanoparticles and nanofibers. This framework hinges on a pair of hydrophobic planar small molecules with only one -OH difference, self-assembling into binary LMWH at 1:1 ratio. Notably, LMWH featuring coptisine and chrysin exhibits superior antifungal efficacy against multidrug-resistant Candida auris compared to the clinical first-line drug fluconazole. By electrostatic adsorption, Candida auris with negative charges can specifically adhere to LMWH with positive charges, facilitating the further exertion of LMWH's pharmacological effects. This leads to the activation of the CWI-MAPK pathway, disrupting the polysaccharide components in the fungal cell wall, inhibiting cell wall biosynthesis, and exerting an antifungal effect. Subsequently, this process reduces inflammation and promotes wound healing. This carrier-free, environmentally friendly strategy has significantly enhanced our understanding of the intricate relationship between structure and assembly, and has paved the way for the theory-guided construction of binary LMWH functional biomaterials with antifungal properties.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"123598"},"PeriodicalIF":12.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OH-optimized rational design of binary phytochemical hydrogels to combat multidrug-resistant fungal infections via CWI-MAPK pathway modulation.\",\"authors\":\"Shuchang Yao, Qi Han, Xuemei Huang, Jihui Lu, Wenmin Pi, Zhijia Wang, Yihang Zhao, Fayuan Guo, Xinru Tan, Liuyang Zhang, Luping Yang, Xiang Zhang, Xiaowen Wang, Penglong Wang\",\"doi\":\"10.1016/j.biomaterials.2025.123598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unique design of low molecular weight hydrogels (LMWH) without carriers has sparked great interest in biomedical applications, yet the construction of binary LMWH remains elusive due to the lack of a theoretical framework linking structure and assembly. Hence, we proposed an innovative theoretical framework, in which a subtle -OH change in parent structures triggers the interconversion of nanoparticles and nanofibers. This framework hinges on a pair of hydrophobic planar small molecules with only one -OH difference, self-assembling into binary LMWH at 1:1 ratio. Notably, LMWH featuring coptisine and chrysin exhibits superior antifungal efficacy against multidrug-resistant Candida auris compared to the clinical first-line drug fluconazole. By electrostatic adsorption, Candida auris with negative charges can specifically adhere to LMWH with positive charges, facilitating the further exertion of LMWH's pharmacological effects. This leads to the activation of the CWI-MAPK pathway, disrupting the polysaccharide components in the fungal cell wall, inhibiting cell wall biosynthesis, and exerting an antifungal effect. Subsequently, this process reduces inflammation and promotes wound healing. This carrier-free, environmentally friendly strategy has significantly enhanced our understanding of the intricate relationship between structure and assembly, and has paved the way for the theory-guided construction of binary LMWH functional biomaterials with antifungal properties.</p>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"325 \",\"pages\":\"123598\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biomaterials.2025.123598\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2025.123598","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
OH-optimized rational design of binary phytochemical hydrogels to combat multidrug-resistant fungal infections via CWI-MAPK pathway modulation.
The unique design of low molecular weight hydrogels (LMWH) without carriers has sparked great interest in biomedical applications, yet the construction of binary LMWH remains elusive due to the lack of a theoretical framework linking structure and assembly. Hence, we proposed an innovative theoretical framework, in which a subtle -OH change in parent structures triggers the interconversion of nanoparticles and nanofibers. This framework hinges on a pair of hydrophobic planar small molecules with only one -OH difference, self-assembling into binary LMWH at 1:1 ratio. Notably, LMWH featuring coptisine and chrysin exhibits superior antifungal efficacy against multidrug-resistant Candida auris compared to the clinical first-line drug fluconazole. By electrostatic adsorption, Candida auris with negative charges can specifically adhere to LMWH with positive charges, facilitating the further exertion of LMWH's pharmacological effects. This leads to the activation of the CWI-MAPK pathway, disrupting the polysaccharide components in the fungal cell wall, inhibiting cell wall biosynthesis, and exerting an antifungal effect. Subsequently, this process reduces inflammation and promotes wound healing. This carrier-free, environmentally friendly strategy has significantly enhanced our understanding of the intricate relationship between structure and assembly, and has paved the way for the theory-guided construction of binary LMWH functional biomaterials with antifungal properties.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.