局部释放成纤维细胞生长因子21和大麻二酚通过激活大麻素受体2促进脊髓神经损伤修复。

IF 12.9 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Biomaterials Pub Date : 2026-02-01 Epub Date: 2025-08-07 DOI:10.1016/j.biomaterials.2025.123609
Zhao Zhang, Zhengquan Wang, Zhihao Shen, Yangbo Zhou, Cheng Zhou, Min Chen, Minghao Jiang, Junyu Zhuang, Jiahui Song, Xiangyang Wang, Shixuan Chen, Jian Xiao, Sipin Zhu
{"title":"局部释放成纤维细胞生长因子21和大麻二酚通过激活大麻素受体2促进脊髓神经损伤修复。","authors":"Zhao Zhang, Zhengquan Wang, Zhihao Shen, Yangbo Zhou, Cheng Zhou, Min Chen, Minghao Jiang, Junyu Zhuang, Jiahui Song, Xiangyang Wang, Shixuan Chen, Jian Xiao, Sipin Zhu","doi":"10.1016/j.biomaterials.2025.123609","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a debilitating condition that leads to severe motor and sensory dysfunction, largely due to inflammation, neuronal damage, and disrupted neural circuits. In this study, we developed an injectable hydrogel (C/F/Gel) co-loaded with fibroblast growth factor 21 (FGF21) and cannabidiol micelles (CBDm) to enhance SCI repair. The hydrogel, composed of PF127 and α-cyclodextrin (α-CD), provides sustained drug release and improves drug stability at the injury site. Our findings demonstrate that C/F/Gel effectively modulates the inflammatory microenvironment by promoting microglial polarization toward the anti-inflammatory M2 phenotype via cannabinoid receptor 2 (CB2R) activation. Additionally, it regulates the balance between excitatory and inhibitory neurons, and significantly improves motor function in SCI mice. Behavioral assessments, histological analysis, and molecular studies confirmed the superior therapeutic efficacy of C/F/Gel compared to single-agent treatments. These results highlight C/F/Gel as a promising biomaterial-based strategy for SCI repair, offering a synergistic approach that integrates inflammation modulation, neuroprotection, and functional recovery.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"123609"},"PeriodicalIF":12.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local release of fibroblast growth factor 21 and cannabidiol promoting spinal cord nerve injury repair through activation of cannabinoid receptor 2.\",\"authors\":\"Zhao Zhang, Zhengquan Wang, Zhihao Shen, Yangbo Zhou, Cheng Zhou, Min Chen, Minghao Jiang, Junyu Zhuang, Jiahui Song, Xiangyang Wang, Shixuan Chen, Jian Xiao, Sipin Zhu\",\"doi\":\"10.1016/j.biomaterials.2025.123609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a debilitating condition that leads to severe motor and sensory dysfunction, largely due to inflammation, neuronal damage, and disrupted neural circuits. In this study, we developed an injectable hydrogel (C/F/Gel) co-loaded with fibroblast growth factor 21 (FGF21) and cannabidiol micelles (CBDm) to enhance SCI repair. The hydrogel, composed of PF127 and α-cyclodextrin (α-CD), provides sustained drug release and improves drug stability at the injury site. Our findings demonstrate that C/F/Gel effectively modulates the inflammatory microenvironment by promoting microglial polarization toward the anti-inflammatory M2 phenotype via cannabinoid receptor 2 (CB2R) activation. Additionally, it regulates the balance between excitatory and inhibitory neurons, and significantly improves motor function in SCI mice. Behavioral assessments, histological analysis, and molecular studies confirmed the superior therapeutic efficacy of C/F/Gel compared to single-agent treatments. These results highlight C/F/Gel as a promising biomaterial-based strategy for SCI repair, offering a synergistic approach that integrates inflammation modulation, neuroprotection, and functional recovery.</p>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"325 \",\"pages\":\"123609\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biomaterials.2025.123609\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2025.123609","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是一种导致严重运动和感觉功能障碍的衰弱性疾病,主要由炎症、神经元损伤和神经回路中断引起。在这项研究中,我们开发了一种可注射的水凝胶(C/F/Gel),共负载成纤维细胞生长因子21 (FGF21)和大麻二酚胶束(CBDm),以增强脊髓损伤的修复。该水凝胶由PF127和α-环糊精(α-CD)组成,具有药物缓释作用,提高了损伤部位的药物稳定性。我们的研究结果表明,C/F/Gel通过大麻素受体2 (CB2R)激活,促进小胶质细胞向抗炎M2表型极化,从而有效调节炎症微环境。此外,它还能调节兴奋性和抑制性神经元之间的平衡,显著改善脊髓损伤小鼠的运动功能。行为评估、组织学分析和分子研究证实,与单药治疗相比,C/F/Gel的治疗效果更好。这些结果强调了C/F/Gel作为一种有前途的基于生物材料的SCI修复策略,提供了一种整合炎症调节,神经保护和功能恢复的协同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local release of fibroblast growth factor 21 and cannabidiol promoting spinal cord nerve injury repair through activation of cannabinoid receptor 2.

Spinal cord injury (SCI) is a debilitating condition that leads to severe motor and sensory dysfunction, largely due to inflammation, neuronal damage, and disrupted neural circuits. In this study, we developed an injectable hydrogel (C/F/Gel) co-loaded with fibroblast growth factor 21 (FGF21) and cannabidiol micelles (CBDm) to enhance SCI repair. The hydrogel, composed of PF127 and α-cyclodextrin (α-CD), provides sustained drug release and improves drug stability at the injury site. Our findings demonstrate that C/F/Gel effectively modulates the inflammatory microenvironment by promoting microglial polarization toward the anti-inflammatory M2 phenotype via cannabinoid receptor 2 (CB2R) activation. Additionally, it regulates the balance between excitatory and inhibitory neurons, and significantly improves motor function in SCI mice. Behavioral assessments, histological analysis, and molecular studies confirmed the superior therapeutic efficacy of C/F/Gel compared to single-agent treatments. These results highlight C/F/Gel as a promising biomaterial-based strategy for SCI repair, offering a synergistic approach that integrates inflammation modulation, neuroprotection, and functional recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信