{"title":"Polyurea-based multimodal interaction nanogels for synergistic bacterial biofilm eradication and prevention of re-colonization.","authors":"Honglin Li, Yanwen Feng, Bingyan Lin, Shiqiang Zhang, Yijin Ren, Jun Yue","doi":"10.1016/j.biomaterials.2025.123607","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilm eradication and prevention of re-colonization are critical for effective treatment of biofilm-associated infections. Although significant progress has been made in nanovehicle-assisted antimicrobial platforms for biofilm eradication, strategies to address re-colonization remain underdeveloped. In this study, we constructed a versatile antimicrobial delivery platform based on multimodal interaction polyurea nanogels (MIPN). MIPN demonstrated excellent biocompatibility and could effectively load various antimicrobials with high capacity due to the multiple intermolecular interactions between the antimicrobials and nanocarriers, including hydrogen bonding, electrostatic, and hydrophobic interactions. By incorporating self-synthesized quorum sensing inhibitors (QSI) within MIPN, bacteria re-colonization was successfully prevented by blocking the quorum sensing pathway and disrupting surface-associated bacterial motilities. Furthermore, MIPN coloaded with QSI- and antibiotics showed a synergistic effect on biofilm eradication and re-colonization prevention, significantly enhancing the healing of biofilm-associated infections in chronic wounds.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"123607"},"PeriodicalIF":12.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2025.123607","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial biofilm eradication and prevention of re-colonization are critical for effective treatment of biofilm-associated infections. Although significant progress has been made in nanovehicle-assisted antimicrobial platforms for biofilm eradication, strategies to address re-colonization remain underdeveloped. In this study, we constructed a versatile antimicrobial delivery platform based on multimodal interaction polyurea nanogels (MIPN). MIPN demonstrated excellent biocompatibility and could effectively load various antimicrobials with high capacity due to the multiple intermolecular interactions between the antimicrobials and nanocarriers, including hydrogen bonding, electrostatic, and hydrophobic interactions. By incorporating self-synthesized quorum sensing inhibitors (QSI) within MIPN, bacteria re-colonization was successfully prevented by blocking the quorum sensing pathway and disrupting surface-associated bacterial motilities. Furthermore, MIPN coloaded with QSI- and antibiotics showed a synergistic effect on biofilm eradication and re-colonization prevention, significantly enhancing the healing of biofilm-associated infections in chronic wounds.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.