Xiaoqing He, Shiyu Ying, Yi Xu, Zhuo Gao, Yi Wu, Mingchun Liu, Mengbo Wu
{"title":"应用纳米硒提高番茄采后果实品质和抗病性","authors":"Xiaoqing He, Shiyu Ying, Yi Xu, Zhuo Gao, Yi Wu, Mingchun Liu, Mengbo Wu","doi":"10.1111/tpj.70432","DOIUrl":null,"url":null,"abstract":"<p>Fruits constitute a vital component of a nutritious diet but are highly perishable, contributing substantially to food waste. Consequently, identifying safe and edible biological agents to enhance product quality and extend shelf life is of critical importance. In this study, we demonstrate that exogenous pre-harvest foliar application with nanoselenium (nano-Se) in tomato enhances fruit quality, prolongs fruit shelf life, and enhances the resistance of tomato fruit to <i>Botrytis cinerea</i> infection. Transcriptomic analysis revealed coordinated upregulation of genes associated with quality maintenance and modulation of phytohormone-related pathways. Notably, nano-Se treatment induced expression patterns of ripening-related genes that resembled those triggered by ethylene (ET) but were antagonistic to the effects of 1-MCP. We further demonstrated that although <i>SlMYC2</i> knockout increased susceptibility to <i>B. cinerea</i>, nano-Se application restored resistance in a manner independent of the SlMYC2-associated jasmonic acid signaling pathway, implicating ET as the primary regulatory mechanism. Collectively, these findings support nano-Se as a promising biostimulant for reducing post-harvest losses while preserving the nutritional and sensory quality of tomato fruits.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70432","citationCount":"0","resultStr":"{\"title\":\"Nanoselenium application improves post-harvest fruit quality and disease resistance in tomato\",\"authors\":\"Xiaoqing He, Shiyu Ying, Yi Xu, Zhuo Gao, Yi Wu, Mingchun Liu, Mengbo Wu\",\"doi\":\"10.1111/tpj.70432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fruits constitute a vital component of a nutritious diet but are highly perishable, contributing substantially to food waste. Consequently, identifying safe and edible biological agents to enhance product quality and extend shelf life is of critical importance. In this study, we demonstrate that exogenous pre-harvest foliar application with nanoselenium (nano-Se) in tomato enhances fruit quality, prolongs fruit shelf life, and enhances the resistance of tomato fruit to <i>Botrytis cinerea</i> infection. Transcriptomic analysis revealed coordinated upregulation of genes associated with quality maintenance and modulation of phytohormone-related pathways. Notably, nano-Se treatment induced expression patterns of ripening-related genes that resembled those triggered by ethylene (ET) but were antagonistic to the effects of 1-MCP. We further demonstrated that although <i>SlMYC2</i> knockout increased susceptibility to <i>B. cinerea</i>, nano-Se application restored resistance in a manner independent of the SlMYC2-associated jasmonic acid signaling pathway, implicating ET as the primary regulatory mechanism. Collectively, these findings support nano-Se as a promising biostimulant for reducing post-harvest losses while preserving the nutritional and sensory quality of tomato fruits.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70432\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70432\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70432","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Nanoselenium application improves post-harvest fruit quality and disease resistance in tomato
Fruits constitute a vital component of a nutritious diet but are highly perishable, contributing substantially to food waste. Consequently, identifying safe and edible biological agents to enhance product quality and extend shelf life is of critical importance. In this study, we demonstrate that exogenous pre-harvest foliar application with nanoselenium (nano-Se) in tomato enhances fruit quality, prolongs fruit shelf life, and enhances the resistance of tomato fruit to Botrytis cinerea infection. Transcriptomic analysis revealed coordinated upregulation of genes associated with quality maintenance and modulation of phytohormone-related pathways. Notably, nano-Se treatment induced expression patterns of ripening-related genes that resembled those triggered by ethylene (ET) but were antagonistic to the effects of 1-MCP. We further demonstrated that although SlMYC2 knockout increased susceptibility to B. cinerea, nano-Se application restored resistance in a manner independent of the SlMYC2-associated jasmonic acid signaling pathway, implicating ET as the primary regulatory mechanism. Collectively, these findings support nano-Se as a promising biostimulant for reducing post-harvest losses while preserving the nutritional and sensory quality of tomato fruits.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.