Plant, Cell & Environment最新文献

筛选
英文 中文
Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209. 气孔-光合成协同作用介导甘蔗突变体 M4209 的耐热和耐盐综合胁迫能力
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-07 DOI: 10.1111/pce.15424
Pooja Negi, Manish Pandey, Radha K Paladi, Arnab Majumdar, Shailaja P Pandey, Vitthal T Barvkar, Rachayya Devarumath, Ashish K Srivastava
{"title":"Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209.","authors":"Pooja Negi, Manish Pandey, Radha K Paladi, Arnab Majumdar, Shailaja P Pandey, Vitthal T Barvkar, Rachayya Devarumath, Ashish K Srivastava","doi":"10.1111/pce.15424","DOIUrl":"https://doi.org/10.1111/pce.15424","url":null,"abstract":"<p><p>Sugarcane (Saccharum officinarum L.) is an economically important long-duration crop which is currently facing concurrent heat waves and soil salinity. The present study evaluates an inducible salt-tolerant sugarcane mutant M4209, developed via radiation-induced mutagenesis of elite check variety Co 86032, under heat (42/30°C; day/night), NaCl (200 mM) or heat + NaCl (HS)-stress conditions. Though heat application significantly improved plant growth and biomass in both genotypes, this beneficial impact was partially diminished in Co 86032 under HS-stress conditions, coinciding with higher Na<sup>+</sup> accumulation and lower triacylglycerol levels. Besides, heat broadly equalised the negative impact on NaCl stress in terms of various physiological and biochemical attributes in both the genotypes, indicating its spaciotemporal advantage. The simultaneous up- and downregulation of antagonistic regulators, epidermal patterning factor (EPF) 9 (SoEPF9) and SoEPF2, respectively attributed to the OSD (Open Small Dense) stomatal phenotype in M4209, which resulted into enhanced conductance, transpirational cooling and gaseous influx. This led to improved photoassimilation, which was supported by higher plastidic:nonplastidic lipid ratio, upregulation of SoRCA (Rubisco activase) and better source strength, resulting in overall plant growth enhancement across all the tested stress scenarios. Taken together, the present study emphasised the knowledge-driven harnessing of stomatal-photosynthetic synergy for ensuring global sugarcane productivity, especially under \"salt-heat\" coupled stress scenarios.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Root Phenotypes for Compacted Soils: Enhancing Root-Soil-Microbe Interactions.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-06 DOI: 10.1111/pce.15462
Jingqi Xu, Zijian Long, Baoru Sun, Fangbo Zhang, Jianbo Shen, Kemo Jin
{"title":"Optimizing Root Phenotypes for Compacted Soils: Enhancing Root-Soil-Microbe Interactions.","authors":"Jingqi Xu, Zijian Long, Baoru Sun, Fangbo Zhang, Jianbo Shen, Kemo Jin","doi":"10.1111/pce.15462","DOIUrl":"https://doi.org/10.1111/pce.15462","url":null,"abstract":"<p><p>Soil compaction impedes root growth, reduces crop yields, and threatens global food security and sustainable agriculture. Addressing this challenge requires a comprehensive understanding of root-soil interactions in compacted environments. This review examines key root traits-architectural, anatomical, biochemical, and biomechanical-that enhance plant resilience in compacted soils. We discuss how these traits influence root penetration and the formation of more favorable soil pore structures, which are crucial for alleviating compaction stress. Additionally, we explore the molecular mechanisms underlying root adaptation, identifying key genetic and biochemical factors that contribute to stress-tolerant root phenotypes. The review emphasizes the role of root-microbe interactions in boosting root adaptability under compaction. By integrating these insights, we propose a framework for breeding crops with resilient root systems that thrive in high soil strength, supporting sustainable agricultural practices essential for food security amidst environmental challenges.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Function of PpKCS6 in Regulating Cuticular Wax Synthesis and Drought Resistance of Kentucky Bluegrass.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-06 DOI: 10.1111/pce.15465
Jia Jiang, Xueling Zheng, Tiantian He, Xiashun Liu, Qianhan Zhao, Wei Tan, Liangbing Xiong, Bing Li, Hang Yin, Gyimah Daniel Agyei, Fuchun Xie, Guowen Cui, Yajun Chen
{"title":"The Function of PpKCS6 in Regulating Cuticular Wax Synthesis and Drought Resistance of Kentucky Bluegrass.","authors":"Jia Jiang, Xueling Zheng, Tiantian He, Xiashun Liu, Qianhan Zhao, Wei Tan, Liangbing Xiong, Bing Li, Hang Yin, Gyimah Daniel Agyei, Fuchun Xie, Guowen Cui, Yajun Chen","doi":"10.1111/pce.15465","DOIUrl":"https://doi.org/10.1111/pce.15465","url":null,"abstract":"<p><p>Drought stress significantly limits plant growth and crop productivity. Cuticular wax minimizes plant water loss and contributes to drought resistance. Kentucky bluegrass (Poa pratensis L.) is a widely used cool-season turfgrass worldwide. However, the molecular mechanisms underlying the regulation of dynamic changes in cuticular wax in relation to drought resistance in Kentucky bluegrass remain unclear. Here, we compared molecular mechanisms of cuticular wax biosynthesis in two Kentucky bluegrass cultivars 'Maoershan' (drought-tolerant) and 'Brilliant' (drought-sensitive). The results showed that 'Brilliant' with lower wax content, suffered more severe morphological and physiological damage from drought stress than the 'Maoershan'. Through transcriptome analysis of these two cultivars, a hub gene of PpKCS6, involved in cuticular wax synthesis, was identified. Overexpression of PpKCS6 promoted the synthesis of very long-chain fatty acids, especially increased the content of fatty acids and alkanes with carbon chains above C24. This led to greater cuticular wax accumulation, which further protected the plants against water loss and improved photosynthesis and water use efficiency. Alternatively, RNAi-PpKCS6 lines exhibited the opposite performance to the overexpression line. These results demonstrate that PpKCS6 plays an important role in drought stress resistance by regulating wax biosynthesis.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Regulation of Rice Leaf Morphology by miRNA-Target Complexes During Viral Infection.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-05 DOI: 10.1111/pce.15460
Lu Wang, Yuansheng Wu, Jialin Zhang, Shanshan Li, Junjie Ren, Liyuan Yang, Wenyang Ye, Xinrong Ying, Jiajun Liu, Xinzhou Liu, M S Salem, Chengqiang Ding, Jianguo Shen, Zujian Wu, Jianguo Wu, Shanshan Zhao
{"title":"Spatial Regulation of Rice Leaf Morphology by miRNA-Target Complexes During Viral Infection.","authors":"Lu Wang, Yuansheng Wu, Jialin Zhang, Shanshan Li, Junjie Ren, Liyuan Yang, Wenyang Ye, Xinrong Ying, Jiajun Liu, Xinzhou Liu, M S Salem, Chengqiang Ding, Jianguo Shen, Zujian Wu, Jianguo Wu, Shanshan Zhao","doi":"10.1111/pce.15460","DOIUrl":"https://doi.org/10.1111/pce.15460","url":null,"abstract":"<p><p>Leaf morphogenesis is essential for plant growth and development, yet the mechanisms by which plant viruses induce changes in leaf shape are not well understood. Rice ragged stunt virus (RRSV) infection induces distinct morphological abnormalities in rice leaves, including leaf tip curling and serrated margins, through unknown pathogenic mechanisms. This study reveals that key regulatory microRNAs (miR164, miR319 and miR156) and their target genes (CUC, TCP and SPL) exhibit entirely opposite expression patterns in healthy and RRSV-infected leaves, indicating a profound impact on the leaf morphogenesis network. Significantly, the core protein OsCUC1, which typically functions by forming dimers, shows abnormal expression in the peripheral zone of the shoot apical meristem under viral infection, leading to disruptions in leaf development. OsTCP1 was found to dynamically regulate OsCUC1 dimer formation by modifying its subcellular localization and interacting with OsSPL14 and OsSPL17, thereby influencing their regulatory functions. Genetic disruptions of OsCUC1, OsTCP1 and OsSPL14/OsSPL17 enhance the severity of RRSV infection, demonstrating their critical involvement in the viral pathogenic strategy. The research uncovers a novel mechanism by which RRSV manipulates the expression and interactions of key regulatory factors, disrupting the delicate balance of the leaf morphogenesis network. These findings expand our understanding of viral manipulation of host development and provide a foundation for innovative strategies to enhance crop resilience.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Nuclear Effector MiISE23 From Meloidogyne incognita Targets JAZ Proteins and Suppresses Jasmonate Signalling, Increasing Host Susceptibility.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-05 DOI: 10.1111/pce.15461
Qianqian Shi, Rui Liu, Lijun Jiang, Shasha Gao, Juan Ma, Xiaoxuan Tian, Chunyu Jiang, Chen Liang, Honghai Zhao, Wenwen Song, Bingyan Xie
{"title":"The Nuclear Effector MiISE23 From Meloidogyne incognita Targets JAZ Proteins and Suppresses Jasmonate Signalling, Increasing Host Susceptibility.","authors":"Qianqian Shi, Rui Liu, Lijun Jiang, Shasha Gao, Juan Ma, Xiaoxuan Tian, Chunyu Jiang, Chen Liang, Honghai Zhao, Wenwen Song, Bingyan Xie","doi":"10.1111/pce.15461","DOIUrl":"https://doi.org/10.1111/pce.15461","url":null,"abstract":"<p><p>Meloidogyne incognita is an economically important plant-parasitic nematode that can infect thousands of different plant species. During its interaction with host plants, M. incognita synthesises numerous effectors in oesophageal glands, which are then secreted into plant tissues. Here, we characterised the effector MiISE23 and found that it could suppress plant immune responses. In situ hybridisation showed that MiISE23 was expressed in the subventral glands. Transgenic Arabidopsis plants expressing MiISE23 were more susceptible to M. incognita, whereas host-derived RNAi of MiISE23 was found to decrease M. incognita infection in Arabidopsis. In vitro and in vivo experiments showed that MiISE23 repressed jasmonate (JA) signalling by directly interacting with and suppressing jasmonoyl-isoleucine (JA-Ile)-induced degradation of jasmonate ZIM-domain proteins by COI1. The expression of MiISE23 in Arabidopsis repressed the expression of JA-responsive genes and reduced the levels of endogenous JA-Ile. AtJAZ6 transgenic lines of Arabidopsis showed increased susceptibility to M. incognita infection. Collectively, our results show that MiISE23 stabilises JAZ proteins and interferes with JA signalling, revealing a novel mechanism utilised by root-knot nematodes to hijack phytohormone signalling and promote parasitism.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viruses Facilitate Energy Acquisition Potential by Their Bacterial Hosts in Rhizosphere of Grafted Plants.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-04 DOI: 10.1111/pce.15458
He Zhang, Yang Ruan, Yakov Kuzyakov, Hong Sun, Qiwei Huang, Shiwei Guo, Qirong Shen, Ning Ling
{"title":"Viruses Facilitate Energy Acquisition Potential by Their Bacterial Hosts in Rhizosphere of Grafted Plants.","authors":"He Zhang, Yang Ruan, Yakov Kuzyakov, Hong Sun, Qiwei Huang, Shiwei Guo, Qirong Shen, Ning Ling","doi":"10.1111/pce.15458","DOIUrl":"https://doi.org/10.1111/pce.15458","url":null,"abstract":"<p><p>Viruses alter the ecological and evolutionary trajectories of bacterial host communities. Plant grafting is a technique that integrates two species or varietiies and have consequences on the rhizosphere functioning. The grafting effects on the taxonomic and functional assembly of viruses and their bacterial host in the plant rhizosphere remain largely elusive. Using shotgun metagenome sequencing, we recover a total of 1441 viral operational taxonomic units from the rhizosphere of grafted and ungrafted plants after 8-year continuous monoculture. In the grafted and ungrafted rhizosphere, the Myoviridae, Zobellviridae and Kyanoviridae emerged as the predominant viral families, collectively representing around 40% of the viral community in each respective environment. Grafting enriched the members in viral family Kyanoviridae, Tectiviridae, Peduoviridae and Suoliviridae, and auxiliary metabolic genes related to pyruvate metabolism and energy acquisition (e.g., gloB, DNMT1 and dcyD). The virus-bacterial interactions increased the rapid growth potential of bacteria, which explains the strong increase in abundance of specific bacterial hosts (i.e., Chitinophagaceae, Cyclobacteriaceae and Spirosomaceae) in the grafted-plant rhizosphere. Overall, these results deepen our understanding of microbial community assembly and ecological services from the perspective of virus-host interactions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic and Metabolomic Evidence Reveal the Vital Role of Lactose in the Acquisition of Rapid Desiccation Tolerance in Boea hygrometrica.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-04 DOI: 10.1111/pce.15454
Run-Ze Sun, Yuan-Yuan Wang, Xiu-Xiu Chen, Xin Deng
{"title":"Transcriptomic and Metabolomic Evidence Reveal the Vital Role of Lactose in the Acquisition of Rapid Desiccation Tolerance in Boea hygrometrica.","authors":"Run-Ze Sun, Yuan-Yuan Wang, Xiu-Xiu Chen, Xin Deng","doi":"10.1111/pce.15454","DOIUrl":"https://doi.org/10.1111/pce.15454","url":null,"abstract":"<p><p>Prior exposure of plants to a triggering factor can enhance their tolerance to more severe stressful events. Transcriptome reprogramming of metabolism and hormonal modulation processes in the resurrection plant Boea hygrometrica was observed during drought acclimation. However, the metabolic dynamics and underlying regulatory networks that modulate drought acclimation-induced rapid desiccation tolerance (RDT) remain unexplored. Here, we performed an integrated transcriptome and metabolome analysis to investigate the phytohormone profiles and metabolic landscapes of B. hygrometrica during drought acclimation and dehydration stress. We identified a set of RDT acquisition-associated biomarkers, including trans-zeatin and some disaccharides (lactose, trehalose, sucrose, and isomaltulose). Exogenous application of lactose effectively enhanced the RDT of B. hygrometrica seedlings and improved drought tolerance in Arabidopsis, tobacco, maize, and wheat. In addition, transient overexpression of lactose-associated transcription factors MYB330 and APETALA2 in B. hygrometrica can promote the RDT and transcription of drought acclimation-inducible genes involved in calcium and ABA signalling and autophagy. In summary, our findings demonstrate that drought acclimation-induced lactose accumulation facilitates the establishment of an \"acclimated state\", leading to transcriptome reprogramming in response to rapid desiccation. These results will also pave the way for using RDT biomarkers to improve crop drought tolerance in an environmentally sustainable manner.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Variation and Adaptive Responses of Tall-Type Field Peas (Pisum sativum L.) Across Indian Subcontinent.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-04 DOI: 10.1111/pce.15450
Ashok Kumar Parihar, Kali Krishna Hazra, Amrit Lamichaney, Debjyoti Sen Gupta, Jitendra Kumar, Anil Kumar Singh, Raj Kumar Mishra, Sankar Prasad Das, Parvez Ahmad Sofi, Ajaz Ahmad Lone, Geeta Rai, Hironya Kumar Borah, Chandra Shekhar Mahto, Khajan Singh, Smita Tiwari, Ashok Kumar Saxena, Sunil Kumar Nair, Mangala Parikh, Vijay Sharma, Sudhakar Prasad Mishra, Rajesh Kumar Yadav, Deepak Singh, Sanjeev Gupta, Shailesh Tripathi, Girish Prasad Dixit
{"title":"Spatial Variation and Adaptive Responses of Tall-Type Field Peas (Pisum sativum L.) Across Indian Subcontinent.","authors":"Ashok Kumar Parihar, Kali Krishna Hazra, Amrit Lamichaney, Debjyoti Sen Gupta, Jitendra Kumar, Anil Kumar Singh, Raj Kumar Mishra, Sankar Prasad Das, Parvez Ahmad Sofi, Ajaz Ahmad Lone, Geeta Rai, Hironya Kumar Borah, Chandra Shekhar Mahto, Khajan Singh, Smita Tiwari, Ashok Kumar Saxena, Sunil Kumar Nair, Mangala Parikh, Vijay Sharma, Sudhakar Prasad Mishra, Rajesh Kumar Yadav, Deepak Singh, Sanjeev Gupta, Shailesh Tripathi, Girish Prasad Dixit","doi":"10.1111/pce.15450","DOIUrl":"https://doi.org/10.1111/pce.15450","url":null,"abstract":"<p><p>Understanding crop performance across diverse agro-ecologies is crucial for developing region-specific breeding strategies. This multi-location study examined the impact of diverse environments on crop eco-phenology and genotype-by-environment interactions (GEI) of tall-type field pea breeding lines. Empirical methods were employed to identify strategic locations that support higher yields and unique genotypic traits. The results revealed significant variations across locations, with coefficients of variation for key traits as follows: days to flowering (31%), days to maturity (20%), reproductive period (19%), yield (35%), and seed weight (31%). Environmental component accounted for the largest yield variation (78%), followed by GEI (13%). Correlation analysis indicated a significant influence of both temperature extremes, particularly maximum temperature during flowering, on crop yields. Higher minimum temperatures during flowering and reproductive period were associated with reduced yields, while extended crop duration in cooler regions also negatively impacted yields. A significant quadratic relationship between seed weight and yield underscored the importance of seed weight as a yield-stabilising trait. GGE-biplot analysis identified four mega-environments, and designated Faizabad, Pantnagar, Varanasi, and Kota as ideal testing sites for selecting genotypes with broader adaptability. These findings provide valuable insights for redesigning field pea breeding programmes at the national level.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Mechanisms of Fruit Diversification in Angiosperms and the Evolutionary Implications.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-04 DOI: 10.1111/pce.15453
Jeonghwan Ahn, Feng Gao, Yang Dong
{"title":"Developmental Mechanisms of Fruit Diversification in Angiosperms and the Evolutionary Implications.","authors":"Jeonghwan Ahn, Feng Gao, Yang Dong","doi":"10.1111/pce.15453","DOIUrl":"https://doi.org/10.1111/pce.15453","url":null,"abstract":"<p><p>The evolutionary origin of fruits played a pivotal role in promoting the dominance of angiosperms on the Earth as the fruits protect and nourish seeds and facilitate their dispersal through diverse mechanisms. Understanding the molecular networks underlying fruit development is a prerequisite for elucidating evolutionary mechanisms shaping fruit diversification, and particularly improving crop yield and quality of fruit in response to the rapid climate change in modern agricultural systems. In this article, we offer a comprehensive analysis of fruit classification, emphasising the intrinsic characteristics and their adaptive dispersal strategies in specific environments. Based on the studies in the model systems such as Arabidopsis thaliana and Solanum lycopersicum, we highlight recent advances in identifying novel components of the molecular networks involved in fruit development. We further discuss the evolutionary mechanisms that contribute to fruit diversification in the context of well-established phylogenetic frameworks, with examples from the Brassicaceae and Solanaceae families. A comparison between Brassicaceae and Solanaceae indicates the key module of fruit development is largely conserved in evolution. We propose the future research that integrates multidisciplinary evidence could help to better understand the mechanisms of fruit development and diversification, which ultimately contribute to improving crop yield and quality in practice.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf Nutrient Resorption of Vascular Epiphytes Is Regulated by Stoichiometry and Nutrient Limitation Control Strategies.
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2025-03-04 DOI: 10.1111/pce.15455
Yan Liu, Wei Sun, Tao Jia, Tian-Hao Su, Shan-Shan Wu, Chun-Yan Zhou, Yu-Xuan Mo, Jin-Hua Qi, Zhi-Yun Lu, Su Li
{"title":"Leaf Nutrient Resorption of Vascular Epiphytes Is Regulated by Stoichiometry and Nutrient Limitation Control Strategies.","authors":"Yan Liu, Wei Sun, Tao Jia, Tian-Hao Su, Shan-Shan Wu, Chun-Yan Zhou, Yu-Xuan Mo, Jin-Hua Qi, Zhi-Yun Lu, Su Li","doi":"10.1111/pce.15455","DOIUrl":"https://doi.org/10.1111/pce.15455","url":null,"abstract":"<p><p>Nitrogen (N) and phosphorus (P) resorption are assumed to be crucial for epiphyte growth in nutrient-poor canopies, yet remain poorly understood due to unique habitats and limited access. We examined the N, P and <sup>15</sup>N natural abundance in mature and senesced leaves of 10 vascular epiphyte species in southwest subtropical China, integrating data from a previous study in tropical lowland forest. We found that subtropical epiphytes experienced N-limitation, likely because of the high P availability, making N relatively scarce. The mean N and P resorption efficiencies per leaf unit were 63.1% and 67.7%, with 14.7% and 12% higher than those on leaf mass, and 3.9% and 3.8% higher than those on leaf area. The combination of strategy analysis, generalized linear models and variance decomposition revealed that the N and P resorption in tropical epiphytes were combinedly regulated by stoichiometry and nutrient limitation control strategies, while subtropical epiphytes employed either the combined strategies or stoichiometry strategy alone. Notably, functional group type strongly influenced N resorption. Leaf δ<sup>15</sup>N reflected nutrient resorption with species-specific variation, driven by functional traits. Epiphytes and terrestrial plants exhibit similar nutrient resorption patterns, which help alleviate the N and P deficiencies and support high biodiversity in forest canopies.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信