{"title":"WRKY1-Mediated Interconversion of MeSA and SA in Neighbouring Apple Plants Enhances Defence Against Powdery Mildew.","authors":"Liming Lan, Lulu Zhang, Lifang Cao, Sanhong Wang","doi":"10.1111/pce.15323","DOIUrl":"https://doi.org/10.1111/pce.15323","url":null,"abstract":"<p><p>Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood. This study reveals a significant increase in SA and MeSA levels in neighbouring plants (receivers) following PM attack on emitter plants, activating defence responses in receivers. Notably, the expression of WRKY1, a previously characterized transcription factor, was upregulated in receivers, implicating its role in defence response modulation. WRKY1 was found to promote SA accumulation and enhance PM resistance in receivers. Importantly, WRKY1 positively regulates the expression of SABP2a, which catalysers MeSA to SA conversion, and negatively regulates SAMT1a, which functions in the reverse reaction. Consequently, WRKY1 facilitates the conversion of MeSA to SA in receivers, preventing its reversion and sustaining elevated SA levels. Collectively, our findings clarify the role of WRKY1 in enhancing the defence response to PM in receivers.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriano Losso, Alice Gauthey, Stefan Mayr, Brendan Choat
{"title":"Foliar Water Uptake Supports Water Potential Recovery but Does Not Affect Xylem Sap Composition in Two Salt-Secreting Mangroves.","authors":"Adriano Losso, Alice Gauthey, Stefan Mayr, Brendan Choat","doi":"10.1111/pce.15332","DOIUrl":"https://doi.org/10.1111/pce.15332","url":null,"abstract":"<p><p>Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals. Daily changes in xylem sap composition (ionic concentrations, pH and surface tension) were monitored during 2 days characterised by the presence of morning dew and difference in tides. In both species, FWU occurred over relatively short times, with leaf Ψ recovering from -4.5 MPa to about -1.5 MPa in 120-150 min. At predawn, Ψ was higher (-1.5 MPa) than sea water Ψ, indicating that leaves had been partially rehydrated by absorbed dew. Tides did not affect Ψ, but high tides increased the overall ionic content of xylem sap. The results indicated mangroves are extremely efficient in absorbing non-saline water via the leaves and restoring the water balance to Ψ higher than seawater. Changes in xylem sap composition, which were strongly influenced by tides, were not affected by observed FWU.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Qu, Chengcheng Zhou, Dan Liu, Biao Han, Zhiyuan Jiao, Shihui Niu, Yousry A El-Kassaby, Wei Li
{"title":"CONSTANS-Like and SHORT VEGETATIVE PHASE-Like Genes Coordinately Modulate TERMINAL FLOWER 2 to Control Dormancy Transitions in Pinus tabuliformis.","authors":"Kai Qu, Chengcheng Zhou, Dan Liu, Biao Han, Zhiyuan Jiao, Shihui Niu, Yousry A El-Kassaby, Wei Li","doi":"10.1111/pce.15313","DOIUrl":"https://doi.org/10.1111/pce.15313","url":null,"abstract":"<p><p>With global climate change, understanding how conifers manage seasonal dormancy is increasingly important. This study explores the physiological and molecular processes controlling dormancy transitions in P. tabuliformis, a key species in northern China. Using dormancy simulations and Time-Ordered Gene Co-Expression Network (TO-GCN) analysis, we identified low temperature, rather than photoperiod, as the primary trigger for dormancy release. The PtTFL2 gene functions as both an environmental sensor and dormancy marker, regulated by cold-dependent and independent pathways involving the photoperiod-responsive PtCOL1 and PtSVP-like (SVL) genes. During the autumn-to-winter transition, PtSVL controls PtTFL2 transcription, forming a regulatory complex to fine-tune dormancy. PtCOL1 also directly regulates PtTFL2 and indirectly modulates it by affecting PtSVL expression. The CO-TFL module controls fall dormancy (ecodormancy), while the SVP-TFL module manages the shift to endodormancy in winter. These findings reveal dual regulatory pathways governing dormancy in conifers, offering insights into their adaptation to cold environments and laying the foundation for further research into dormancy mechanisms in gymnosperms.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah McLaughlin, Paul Himmighofen, Sheharyar A Khan, Alexandra Siffert, Christelle A M Robert, Joëlle Sasse
{"title":"Root Exudation: An In-Depth Experimental Guide.","authors":"Sarah McLaughlin, Paul Himmighofen, Sheharyar A Khan, Alexandra Siffert, Christelle A M Robert, Joëlle Sasse","doi":"10.1111/pce.15311","DOIUrl":"https://doi.org/10.1111/pce.15311","url":null,"abstract":"<p><p>Plants exude a wide variety of compounds into the rhizosphere, modulating soil functioning and diversity. The number of studies investigating exudation has exponentially increased over the past decades. Yet, the high inter-study variability of the results is slowing down our understanding of root-soil interactions. This variability is partly due to the absence of harmonized methodologies to collect and characterize exudation. Here, we discuss how various experimental aspects influence exudation profiles by performing a literature review, and we suggest best practices for different experimental setups. We discuss state-of-the-art of spatially resolved exudate collection, collection in controlled versus field conditions and plant growth setups ranging from hydroponics to soil. We highlight the importance of preparing experimental blanks, in situ versus ex situ exudate collection, various collection media and timing of collection, exudate storage and processing and analytical considerations. We summarize best practices for experimental setup and reporting of parameters in an easily accessible table format to facilitate discussion of best practices in the field. An increased standardization in the field together with the systematic studies suggested will improve our knowledge of how plant exudation shapes interactions with organisms in soil.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Govindegowda Priyanka, Jeevan R Singiri, Nurit Novoplansky, Gideon Grafi
{"title":"Short Exposure to Full Moonlight Has a Long-Term Impact on Brassica juncea Cell Activity and Growth.","authors":"Govindegowda Priyanka, Jeevan R Singiri, Nurit Novoplansky, Gideon Grafi","doi":"10.1111/pce.15333","DOIUrl":"https://doi.org/10.1111/pce.15333","url":null,"abstract":"<p><p>Lunar farming, often regarded as a myth, is regularly practiced in many places around the world (e.g., India) where framers organized their agricultural activities according to moon phases. Early and recent work showed that exposure to moonlight affects the life cycle of plants, from seed germination and vegetative growth to fruit maturation and dispersal. Here we addressed the long-term effect of short exposure to full moonlight (FML) on cellular activities in Brassica juncea by analyzing protein and metabolite profiles immediately after 3-night-exposure (3NE) or 7 and 15 days after exposure (DAE) to FML. This study shows an increase in nuclear size following 3NE to FML, which was accompanied by changes in protein and metabolite profiles. We identified significant alterations in protein and metabolite profiles between FML and dark-treated plants in conjunction with developmental stages, which persisted long after exposure to FML. Most notable are the changes in composition of metabolite interconversion enzymes (MIEs) at various developmental stages which were intensified in FML-treated plants. Changes in MIEs were accompanied by significant alterations in metabolite composition and level, particularly at 15DAE, including branched-chain amino acids (e.g., valine, leucine), multiple sugars (raffinose, glucose, sucrose) as well as the tricarboxylic acid (TCA) cycle intermediates malic acid and citric acid. Thus, our results show that short-term exposure to FML triggers a developmental switch resulting in a long-term impact on plant performance that brings about an increase in cell activities and consequently enhanced growth. Our results call for meticulous research on this lunar phenomenon and its potential to enhance crop plant growth and development.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chloroplastic Aspartyl-tRNA Synthetase Is Required for Chloroplast Development, Photosynthesis and Photorespiratory Metabolism.","authors":"Yue Xi, Jiajia Cai, Qiufei Peng, Ganting Li, Guohui Zhu","doi":"10.1111/pce.15330","DOIUrl":"https://doi.org/10.1111/pce.15330","url":null,"abstract":"<p><p>Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO<sub>2</sub>, but normal growth under elevated CO<sub>2</sub> conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase. AspRS3 is localised in both chloroplasts and mitochondria, with the chloroplast being the primary site of its physiological function. The AspRS3 mutation impacts the expression of plastid-encoded and photosynthesis-related genes, leading to decreased levels of chloroplast-encoded proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RBCL) and ferredoxin-dependent glutamate synthase (Fd-GOGAT). Furthermore, we observed an accumulation of photorespiratory intermediates, including glycine and glycerate, and reactive oxygen species (ROS) in asprs3-1. However, under high CO<sub>2</sub>, the expression of these proteins, the accumulation of photorespiratory intermediates, and ROS levels in asprs3-1 did not significantly differ from those in the wild type. We propose that elevated CO<sub>2</sub> mitigates the asprs3-1 phenotype by inhibiting Rubisco oxygenation and photorespiratory metabolism. This study highlights the role of aminoacyl-tRNA synthetases in regulating photorespiration and provides new insights into its metabolic control.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5.","authors":"Qing-Ping Zhao, Bai-Ling Miao, Jin-Dong Zhu, Xing-Kun Li, Xiang-Lin Fu, Meng-Yuan Han, Qi-Qi Wu, Qiu-Hong Niu, Xiao Zhang, Xiang Zhao","doi":"10.1111/pce.15320","DOIUrl":"https://doi.org/10.1111/pce.15320","url":null,"abstract":"<p><p>Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium. The mutation in SAV1, which encodes the protein Sec. 24C, leads to ultrastructural alterations in cuticle membranes, decreased deposition of epicuticular wax crystals, and modifications in the chemical composition of very-long-chain fatty acids in cuticular waxes. SAV1 is a membrane protein and expressed during the early stages of seedling development. The defective phenotype of sav1-1 in sugar-free medium resembles that of abcg5, which encodes an ATP-BINDING CASSETTE TRANSPORTER subfamily G 5 (ABCG5) protein involved in cuticle layer formation. Further investigations reveal that SAV1 interacts with ABCG5, influencing the membrane localisation of ABCG5. Collectively, our results suggest that SAV1 plays a critical role in wax transport by altering the subcellular localisation of ABCG5.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikolas Souza Mateus, Antonio Leite Florentino, Gabriel Luis Lima Soares Moreira, Marina Lima Nogueira, Maria Eduarda Pena Ferreira, Monica Lanzoni Rossi, Francisco Scaglia Linhares, Jose Lavres
{"title":"Disguised Blessings: A Mechanistic Understanding of the Beneficial Outcomes Triggered by Partial K Replacement With Na in Two Eucalyptus Species Under Drought Stress.","authors":"Nikolas Souza Mateus, Antonio Leite Florentino, Gabriel Luis Lima Soares Moreira, Marina Lima Nogueira, Maria Eduarda Pena Ferreira, Monica Lanzoni Rossi, Francisco Scaglia Linhares, Jose Lavres","doi":"10.1111/pce.15316","DOIUrl":"https://doi.org/10.1111/pce.15316","url":null,"abstract":"<p><p>While not essential for most plants, sodium (Na<sup>+</sup>) can partially substitute for potassium (K<sup>+</sup>) in some metabolic functions. Thus, understanding the mechanisms underlying K<sup>+</sup> and Na<sup>+</sup> uptake, transport, utilization, and ion replacement is crucial to sustain forest production. A pot experiment was designed with 6 K/Na ratios (100/0, 85/15, 70/30, 55/45, 40/60, and 0/0%) and two water conditions (well-watered, W+; and water-stressed, W-) on two Eucalyptus species with contrasting drought tolerance. In a multi-level analysis, we measured morphological, nutritional, physiological, biochemical, molecular, and anatomical traits. Low to moderate K replacement with Na (85/15%-55/45%) provided partial and faster stomatal closure (lower δ<sup>13</sup>C), thereby enhancing plants' water status (WUE, RLWC, Ψ<sub>PD</sub>, Ψ<sub>MD</sub>), photosynthetic capacity (g<sub>s</sub>, E, A, C<sub>i</sub>/C<sub>a</sub>), photoprotection (NPQ, qP, ETR, F<sub>v</sub>/F<sub>M</sub>, ΦPSII), and growth (height, collar diameter, LA, TDM) relative to exclusive K supply. The 70/30% K/Na replacement was defined as the ideal ratio, upregulating K<sup>+</sup> and water uptake (overexpression of AKT1, PIP2;5, PIP2;7 and TIP1;3), maximizing enzymatic antioxidant performance and biomass production, and reducing oxidative stress. High K replacement with Na (40/60%) and K deficiency (0/0%) led to incomplete stomatal closure reduced water status, photosynthetic capacity, photoprotection, and growth, especially in the species with low drought tolerance.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MangroveDB: A Comprehensive Online Database for Mangroves Based on Multi-Omics Data.","authors":"Chaoqun Xu, Ling-Yu Song, Jing Li, Lu-Dan Zhang, Ze-Jun Guo, Dong-Na Ma, Ming-Jin Dai, Qing-Hua Li, Jin-Yu Liu, Hai-Lei Zheng","doi":"10.1111/pce.15318","DOIUrl":"https://doi.org/10.1111/pce.15318","url":null,"abstract":"<p><p>Mangroves are dominant flora of intertidal zones along tropical and subtropical coastline around the world that offer important ecological and economic value. Recently, the genomes of mangroves have been decoded, and massive omics data were generated and deposited in the public databases. Reanalysis of multi-omics data can provide new biological insights excluded in the original studies. However, the requirements for computational resource and lack of bioinformatics skill for experimental researchers limit the effective use of the original data. To fill this gap, we uniformly processed 942 transcriptome data, 386 whole-genome sequencing data, and provided 13 reference genomes and 40 reference transcriptomes for 53 mangroves. Finally, we built an interactive web-based database platform MangroveDB (https://github.com/Jasonxu0109/MangroveDB), which was designed to provide comprehensive gene expression datasets to facilitate their exploration and equipped with several online analysis tools, including principal components analysis, differential gene expression analysis, tissue-specific gene expression analysis, GO and KEGG enrichment analysis. MangroveDB not only provides query functions about genes annotation, but also supports some useful visualization functions for analysis results, such as volcano plot, heatmap, dotplot, PCA plot, bubble plot, population structure, and so on. In conclusion, MangroveDB is a valuable resource for the mangroves research community to efficiently use the massive public omics datasets.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}