Yao Luhua, Ni Yu, Chen Chunjie, Xiong Wangdan, Gan Qiaoqiao, Jia Xinfeng, Jin Shurong, Yang Jianfeng, Guo Yanjun
{"title":"Unlocking the Synergy: ABA Seed Priming Enhances Drought Tolerance in Seedlings of Sweet Sorghum Through ABA-IAA Crosstalk.","authors":"Yao Luhua, Ni Yu, Chen Chunjie, Xiong Wangdan, Gan Qiaoqiao, Jia Xinfeng, Jin Shurong, Yang Jianfeng, Guo Yanjun","doi":"10.1111/pce.15575","DOIUrl":"https://doi.org/10.1111/pce.15575","url":null,"abstract":"<p><p>Abscisic acid (ABA) seed priming impacts plant growth and stress resistance, yet its precise physiological and molecular mechanisms remain elusive. This study explored the role of ABA-priming in enhancing drought acclimation in sweet sorghum (Sorghum bicolor Moench) using physiological assessments and comparative transcriptomics. Under drought stress, ABA-primed seedlings exhibited increased plant height, larger leaves, and higher leaf water content compared to non-primed plants. While drought negatively affected photosynthesis through the regulation of photosystem I and II, ABA-priming improved photosynthesis and WUE by involving in differential expression of photosystem II genes. ABA-priming promoted the accumulation of cuticular wax and cutin, effectively reducing leaf water loss. Drought triggered endogenous ABA production via ABA inactivation genes (UGT, BGLU), while ABA-priming activated auxin (IAA) biosynthesis via YUCCA, enhancing auxin-mediated responses and gibberellic acid (GA) signalling. The synergistic action of ABA and IAA culminated in enhanced drought tolerance. Additionally, ABA-priming and drought stress regulated NAC transcription factors, with SbNAC21-1 emerging as a pivotal transcriptional activator intricately linked to auxin signalling. Overexpression of SbNAC21-1 in Arabidopsis effectively enhanced drought tolerance. These findings offer valuable insights into the intricate mechanisms underpinning the beneficial effects of ABA-priming, ultimately enhancing plant adaptability to environmental stressors.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroRNAs in Plants Development and Stress Resistance.","authors":"Xi Zhao, Jia Yang, Haiyan Wang, Haidong Xu, Yuyi Zhou, Liusheng Duan","doi":"10.1111/pce.15546","DOIUrl":"https://doi.org/10.1111/pce.15546","url":null,"abstract":"<p><p>Plant growth and development are governed by a rigorously timed sequence of ontogenetic programmes. MicroRNAs (miRNAs), a class of short noncoding RNAs, function as master regulators of gene expression by targeting mRNAs for cleavage or direct translational inhibition at the posttranscriptional level in eukaryotes. Numerous miRNA molecules that control significant agronomic properties in plants have been found. On the one hand, miRNAs target transcription factors (TFs) to determine plant structure, such as root development, internode elongation, leaf morphogenesis, sex determination and nutrient transition. On the other hand, miRNAs alter expression levels to adapt to biological and abiotic stresses, including fungi, bacteria, viruses, drought, waterlogging, high temperature, low temperature, salinity, nutrient deficiencies, heavy metals and other abiotic stresses. To fully understand the role of miRNAs in plants, we review the regulatory role of miRNAs in plant development and stress resistance. Beyond that, we propose that the novel miRNA in review can be effectively further studied with artificial miRNA (amiRNA) or short tandem target mimics (STTM) and miRNA delivery in vitro can be used to improve crop yield and agricultural sustainability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial Energy Homeostasis and Membrane Interaction Regulate the Rapid Growth of Moso Bamboo.","authors":"Yanli Gao, Anjing Chen, Dongmei Zhu, Mingbing Zhou, Huahong Huang, Ronghui Pan, Xu Wang, Lei Li, Jinbo Shen","doi":"10.1111/pce.15559","DOIUrl":"https://doi.org/10.1111/pce.15559","url":null,"abstract":"<p><p>The rapid growth of moso bamboo is primarily attributed to the swift elongation of its internodes. While mitochondria are known to provide energy for various cellular processes, the specific mechanisms by which they facilitate rapid growth in bamboo remain elusive. In this study, we optimised the procedures for mitochondria isolation and performed a comprehensive analysis of mitochondrial dynamics and proteomics from internodes at various growth stages, including the initial growth (IG) stage, the starting of cell division (SD), and the rapid elongation (RE). Confocal observation demonstrated that cells in the RE stage have a higher mitochondrial density and increased mitochondrial motility compared to other stages. Proteomic analysis of isolated mitochondria revealed an upregulation of the tricarboxylic acid cycle, along with a synchronous increase in both mitochondrial- and nuclear-encoded components of oxidative phosphorylation in RE cells. Moreover, the upregulation of various mitochondrial membrane transporters in RE cells suggests an enhanced exchange of metabolic intermediates and inorganic ions with the cytosol. Intriguingly, ultrastructural analysis and pharmacological treatments revealed membrane interactions between the endoplasmic reticulum (ER) and mitochondria in RE cells. In conclusion, our study provides novel insights into mitochondrial function and the intracellular dynamics that regulate the rapid growth of moso bamboo.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering the Secrets of How Plants Adapt to Water Stress.","authors":"Gaojie Li, Na Wei, Hongwei Hou","doi":"10.1111/pce.15571","DOIUrl":"https://doi.org/10.1111/pce.15571","url":null,"abstract":"<p><p>The frequency of flooding and other naturally occurring stresses caused by global climate change is increasing rapidly worldwide. Recent research has uncovered the morphological, physiological, and molecular mechanisms underlying water stress adaptation in model plants. This review synthesizes recent advances in understanding water adaptation, not only in model terrestrial plants but also in amphibious and aquatic plants. Plants respond to flooding stress through various adaptive strategies, including (1) the low-oxygen quiescence strategy (LOQS), which conserves energy by pausing metabolism and growth during flooding, and (2) the low-oxygen escape strategy (LOES), where plants elongate organs rapidly to reach the water surface and access more oxygen. In amphibious plants, heterophylly enables the production of dramatically different leaf forms to adapt to terrestrial versus submerged environments, representing a third strategy- the \"variation\" strategy for water stress adaptation. Unlike terrestrial crops, which must \"wait\" or \"escape\" during flooding, amphibious plants can naturally thrive in both aquatic and terrestrial habitats. In addition to heterophylly, other mechanisms of water stress adaptation in amphibious and aquatic plants are also discussed. Understanding these mechanisms can advance our knowledge for developing future flood-resilient crops, which are essential for sustainable agriculture under changing climates.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143959493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Amato, Shantel Mahalath, Liyuan Zhang, Paul J Rushton, Qingxi J Shen
{"title":"Structure and Functions of NDR1/HIN1-Like (NHL) Proteins in Plant Development and Response to Environmental Stresses.","authors":"Victoria Amato, Shantel Mahalath, Liyuan Zhang, Paul J Rushton, Qingxi J Shen","doi":"10.1111/pce.15569","DOIUrl":"https://doi.org/10.1111/pce.15569","url":null,"abstract":"<p><p>The NON-RACE-SPECIFIC DISEASE RESISTANCE 1/harpin-induced 1-LIKE (NHL) gene family plays pivotal roles, including pathogen resistance, abiotic stress tolerance, and developmental regulation, underscoring their functional versatility in developmental and physiological processes of plants. NHL proteins often localize to the plasma membrane and contain conserved motifs, including the LEA2 and transmembrane domains, enabling dynamic interactions with signalling molecules and transcription factors. The ability of NHL proteins to dimerize and oligomerize further enhances their regulatory potential in signalling pathways. This review explores the structural and functional diversity of NHL proteins including their localizations, interacting proteins, and responses to abiotic and biotic stresses, ion transportation, seed germination, and responses to phytohormones. Future research integrating phylogenetics, and advanced tools including artificial intelligence will unlock the full potential of this gene family for breeding climate-resilient crops and agricultural sustainability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peigang Li, Zhenghong An, Nan Xu, Jigang Li, Qiaoxia Li, Chaoying He
{"title":"Phenotypic Plasticity and Stability in Plants: Genetic Mechanisms, Environmental Adaptation, Evolutionary Implications, and Future Directions.","authors":"Peigang Li, Zhenghong An, Nan Xu, Jigang Li, Qiaoxia Li, Chaoying He","doi":"10.1111/pce.15566","DOIUrl":"https://doi.org/10.1111/pce.15566","url":null,"abstract":"<p><p>The phenotypic display, survival, and reproduction of organisms depend on genotype-environment interactions that drive development, evolution, and diversity. Biological systems exhibit two basic but paradoxical features that contribute to developmental robustness: plasticity and stability. However, the understanding of these concepts remains ambiguous. The morphology and structure of plant reproductive organs-flowers and fruits-exhibit substantial stability but display a certain level of plasticity under environmental changes, thus representing promising systems for the study of how stability and plasticity jointly govern plant development and evolution. Beyond the genes underlying organ formation, certain genes may maintain stability and induce plasticity. Variations in relevant genes can induce developmental repatterning, thereby altering stability or plasticity under light and temperature fluctuations, which often affects fitness. The regulation of developmental robustness in plant vegetative organs involves transcriptional and post-transcriptional regulation, epigenetics, and phase separation; however, these mechanisms in the reproductive organs of flowering plants remain poorly investigated. Moreover, genes that specifically determine phenotypic plasticity have rarely been cloned. This review clarifies the concepts and attributes of phenotypic plasticity and stability and further proposes potential avenues and a paradigm to investigate the underlying genes and elucidate how plants adapt and thrive in diverse environments, which is crucial for the design of genetically modified crops.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaigai Du, Xin Tian, Daan M van den Brink, Jian Xu, Eric J W Visser, Ivo Rieu
{"title":"Root Hair Development Is Suppressed by Long-Term Mild Heat Through Down-Regulation of RHD6 and RHD6-like Genes.","authors":"Gaigai Du, Xin Tian, Daan M van den Brink, Jian Xu, Eric J W Visser, Ivo Rieu","doi":"10.1111/pce.15563","DOIUrl":"https://doi.org/10.1111/pce.15563","url":null,"abstract":"<p><p>Roots located in the upper soil layers are prone to experiencing high temperatures. Despite their importance for water and nutrient absorption, little is known about the effect of high temperature on root hairs. Here, we found that exposure of Arabidopsis thaliana seedlings to long-term mild heat suppressed root hair initiation. Epidermal patterning of hair and non-hair cells was maintained, as observed with GL2- and CPC-based marker genes, and the suppression was independent of the activity of GL2 and its upstream regulators. Instead, we found that expression of downstream RHD6 and RHD6-like bHLH transcription factor genes RSL2 and RSL4 was reduced and that overexpression of RHD6 via an inducible transgene or ethylene treatment maintained the transcriptional expression of RSL2 and RSL4 and fully rescued the root hair phenotype. We conclude that GL2-independent downregulation of RHD6 and its homologues mediates the inhibition in root hair initiation under long-term mild heat stress. This finding may contribute to the development of strategies for improving plant performance under high temperature.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant Morphology and a Phytochrome B Model Reveal That the Effects of Far-Red Light on Shade-Avoidance-Like Responses Persist Under High Light Intensity.","authors":"Jiyong Shin, Erik S Runkle","doi":"10.1111/pce.15562","DOIUrl":"https://doi.org/10.1111/pce.15562","url":null,"abstract":"<p><p>Several studies have concluded that high photon flux density (PFD) attenuates the effects of the red (R; 600-699 nm) to far-red (FR; 700-750 nm) light ratio on morphology. However, the suppressive effects can depend on individual wavebands that modulate photoreceptor activity. We postulated that morphological responses of shade-avoiding plants to the FR fraction (FR-PFD divided by R + FR PFD) act independent of total PFD (TPFD; 400-750 nm) when TPFD increases are only from R and FR light. We grew kale and lettuce under three FR fractions and four TPFDs while maintaining a constant blue (B; 400-499 nm) PFD. An increase in the R + FR PFD reduced leaf elongation and specific leaf area (SLA). However, higher light did not suppress the FR-fraction effects on leaf elongation and SLA. We estimated PHYB activity with a three-state PHYB model to mechanistically explain the suppressive effects of high light on leaf elongation and SLA but not on FR-mediated leaf elongation and SLA increase. PHYB model predictions were in accordance with the morphological responses of kale and lettuce. This study is the first to apply the three-state PHYB model to explain photon-spectrum-induced morphology of light-grown whole plants, demonstrating its potential use to crops and for applications.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143959010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Stem-Specific Cell Death-Inducing Cyclo-Dipeptide From Woody Plant Pathogen Valsa mali Modulates Plant Immune Response.","authors":"Dian Zheng, Weiwei Yuan, Xiangrong Tian, Yangguang Meng, Hongyun Sun, Liangsheng Xu, Lili Huang","doi":"10.1111/pce.15561","DOIUrl":"https://doi.org/10.1111/pce.15561","url":null,"abstract":"<p><p>Apple Valsa canker, caused by the pathogen Valsa mali, is a severe disease which specifically manifests itself on apple twigs and bark but not on leaves, and it affects apple production. In this study, we report the discovery and characterization of a stem-specific cell death-inducing peptide named SDP1, synthesized by an non-ribosomal peptide synthetases (NRPS)-like gene (VM1G_01528), designated as SDG1. The gene is located in secondary metabolite biosynthetic gene cluster 4 on chromosome 2 of V. mali. Deletion of SDG1 significantly impaired the ability of the pathogen to infect apple twigs. Chemically synthesized SDP1 restored the virulence of ΔSDG1 mutant on apple twigs. Moreover, SDP1 induced cell death in apple stem tissue culture, and suppressed the production of lignin, while it had no effect on apple leaves. Single deletions of other genes in the same secondary metabolite biosynthetic gene cluster also abolished the production of SDP1 and reduced virulence on apple twigs. Transcriptome data from apple stem tissue treated with SDP1 suggested that chloroplast activity and auxin responses were inhibited upon SDP1 treatment. Our findings suggest that SDP1 is a novel stem-specific virulence factor that contributes to the virulence of V. mali and may represent a new target for the development of specific disease control strategies.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enriched Flavonoid Compounds Confer Enhanced Resistance to Fusarium-Induced Root Rot in Oil Tea Plants.","authors":"Junqia Kong, Zhanhua Zhou, Zhong Li, Jinping Shu, Shouke Zhang","doi":"10.1111/pce.15553","DOIUrl":"https://doi.org/10.1111/pce.15553","url":null,"abstract":"<p><p>Root rot in Camellia oleifera complicates the development of targeted control measures owing to its complex aetiology. Although breeding resistant varieties of C. oleifera presents a promising solution, research into cultivation strategies and potential resistance mechanisms against root rot remains limited. In this study, we investigated six cultivars of C. oleifera that exhibit varying levels of resistance to root rot. We conducted transcriptome analysis, measurements of soil physicochemical properties and an analysis of the fungal microbiome to explore the relationship between Fusarium-induced root rot and flavonoid compounds in the rhizosphere. The resistant cultivar CL18 demonstrated superior performance concerning root rot incidence, root health status and the expression levels of genes associated with flavonoid biosynthesis in this study. Significant differences were observed in the composition and diversity of rhizosphere fungal communities among the various cultivars of C. oleifera. The abundance of Fusarium in the rhizosphere soil of CL18 was low, and a negative correlation was identified between the flavonoid content in the soil and the abundance of Fusarium. Our study uncovers the role of flavonoids in the resistance of C. oleifera to root rot, thereby offering new strategies for disease management and the breeding of resistant cultivars.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}