{"title":"干旱条件下豌豆叶片代谢和信号转导及其恢复","authors":"Jayendra Pandey, Chakradhar Mantena, Aprajita Kumari, Pooja Singh, Christine H Foyer, Kapuganti Jagadis Gupta, Rajagopal Subramanyam","doi":"10.1111/pce.70157","DOIUrl":null,"url":null,"abstract":"<p><p>Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolism and Signalling in Pea (Pisum sativum) Leaves Exposed to Drought and Subsequent Recovery.\",\"authors\":\"Jayendra Pandey, Chakradhar Mantena, Aprajita Kumari, Pooja Singh, Christine H Foyer, Kapuganti Jagadis Gupta, Rajagopal Subramanyam\",\"doi\":\"10.1111/pce.70157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70157\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70157","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Metabolism and Signalling in Pea (Pisum sativum) Leaves Exposed to Drought and Subsequent Recovery.
Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.