干旱条件下豌豆叶片代谢和信号转导及其恢复

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Jayendra Pandey, Chakradhar Mantena, Aprajita Kumari, Pooja Singh, Christine H Foyer, Kapuganti Jagadis Gupta, Rajagopal Subramanyam
{"title":"干旱条件下豌豆叶片代谢和信号转导及其恢复","authors":"Jayendra Pandey, Chakradhar Mantena, Aprajita Kumari, Pooja Singh, Christine H Foyer, Kapuganti Jagadis Gupta, Rajagopal Subramanyam","doi":"10.1111/pce.70157","DOIUrl":null,"url":null,"abstract":"<p><p>Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolism and Signalling in Pea (Pisum sativum) Leaves Exposed to Drought and Subsequent Recovery.\",\"authors\":\"Jayendra Pandey, Chakradhar Mantena, Aprajita Kumari, Pooja Singh, Christine H Foyer, Kapuganti Jagadis Gupta, Rajagopal Subramanyam\",\"doi\":\"10.1111/pce.70157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70157\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70157","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

揭示植物对干旱的反应和随后的恢复所涉及的代谢和分子机制,对于确定可用于改善作物植物的耐旱机制至关重要。在这里,我们将植物生理学和生物化学,基因表达,定量蛋白质组学和代谢物分析相结合,以确定在植物经历和从干旱中恢复过程中起作用的遗传和代谢网络。转录本、蛋白质和代谢物的网络分析表明,三羧酸循环和脂质代谢等生物过程对叶片对干旱和恢复的响应具有重要影响。碳水化合物氧化途径的刺激被证明是产生能量和前体的关键节点,这些能量和前体是支持多种防御生存途径所需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolism and Signalling in Pea (Pisum sativum) Leaves Exposed to Drought and Subsequent Recovery.

Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信