Sandra Roller, Thea M Weiß, Volker Hahn, Tobias Würschum
{"title":"玉米离体对磷肥响应的遗传变异及数量性状位点分析。","authors":"Sandra Roller, Thea M Weiß, Volker Hahn, Tobias Würschum","doi":"10.1111/pce.70174","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the nutritional quality of crops is crucial for human health, livestock, and agricultural productivity, especially on nutrient-limited soils. To address this, we investigated the variation and the genetic basis of mineral content, including, among others, calcium, iron, phosphorus, and zinc, in a diverse panel of maize (Zea mays L.) grown across environments. Our results show that genetic variation significantly contributes to differences in mineral content. Genotype-by-environment interaction and environmental factors, such as reduced phosphorus fertilisation, substantially impact the ionome composition, particularly decreasing zinc content and altering grain quality. Correlations between the 12 minerals were mostly positive, with variation observed in mineral composition between tissues and in translocation from vegetative to generative tissue. In addition, elite lines exhibited distinct mineral profiles compared to landraces. Genome-wide association mapping revealed a quantitative inheritance of the minerals and few common quantitative trait loci. Significantly associated markers were found in proximity to candidate genes involved in processes like mineral transport, detoxification and storage, which represent potential targets for marker-assisted selection to improve nutritional quality in maize. In conclusion, our results highlight the temporal and spatial dynamics of the maize ionome as a basis toward its targeted design for future agriculture.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Variation and Quantitative Trait Loci Analysis of the Maize Ionome in Response to Phosphorus Fertilisation.\",\"authors\":\"Sandra Roller, Thea M Weiß, Volker Hahn, Tobias Würschum\",\"doi\":\"10.1111/pce.70174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improving the nutritional quality of crops is crucial for human health, livestock, and agricultural productivity, especially on nutrient-limited soils. To address this, we investigated the variation and the genetic basis of mineral content, including, among others, calcium, iron, phosphorus, and zinc, in a diverse panel of maize (Zea mays L.) grown across environments. Our results show that genetic variation significantly contributes to differences in mineral content. Genotype-by-environment interaction and environmental factors, such as reduced phosphorus fertilisation, substantially impact the ionome composition, particularly decreasing zinc content and altering grain quality. Correlations between the 12 minerals were mostly positive, with variation observed in mineral composition between tissues and in translocation from vegetative to generative tissue. In addition, elite lines exhibited distinct mineral profiles compared to landraces. Genome-wide association mapping revealed a quantitative inheritance of the minerals and few common quantitative trait loci. Significantly associated markers were found in proximity to candidate genes involved in processes like mineral transport, detoxification and storage, which represent potential targets for marker-assisted selection to improve nutritional quality in maize. In conclusion, our results highlight the temporal and spatial dynamics of the maize ionome as a basis toward its targeted design for future agriculture.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70174\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70174","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genetic Variation and Quantitative Trait Loci Analysis of the Maize Ionome in Response to Phosphorus Fertilisation.
Improving the nutritional quality of crops is crucial for human health, livestock, and agricultural productivity, especially on nutrient-limited soils. To address this, we investigated the variation and the genetic basis of mineral content, including, among others, calcium, iron, phosphorus, and zinc, in a diverse panel of maize (Zea mays L.) grown across environments. Our results show that genetic variation significantly contributes to differences in mineral content. Genotype-by-environment interaction and environmental factors, such as reduced phosphorus fertilisation, substantially impact the ionome composition, particularly decreasing zinc content and altering grain quality. Correlations between the 12 minerals were mostly positive, with variation observed in mineral composition between tissues and in translocation from vegetative to generative tissue. In addition, elite lines exhibited distinct mineral profiles compared to landraces. Genome-wide association mapping revealed a quantitative inheritance of the minerals and few common quantitative trait loci. Significantly associated markers were found in proximity to candidate genes involved in processes like mineral transport, detoxification and storage, which represent potential targets for marker-assisted selection to improve nutritional quality in maize. In conclusion, our results highlight the temporal and spatial dynamics of the maize ionome as a basis toward its targeted design for future agriculture.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.