Tomato Roots Exhibit Development-Specific Responses to Bacterial-Derived Peptides.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Rebecca Leuschen-Kohl, Robyn Roberts, Danielle M Stevens, Ning Zhang, Silas Buchanan, Brooke Pilkey, Gitta Coaker, Anjali S Iyer-Pascuzzi
{"title":"Tomato Roots Exhibit Development-Specific Responses to Bacterial-Derived Peptides.","authors":"Rebecca Leuschen-Kohl, Robyn Roberts, Danielle M Stevens, Ning Zhang, Silas Buchanan, Brooke Pilkey, Gitta Coaker, Anjali S Iyer-Pascuzzi","doi":"10.1111/pce.70164","DOIUrl":null,"url":null,"abstract":"<p><p>To combat soilborne pathogens, roots activate pattern-triggered immunity (PTI) through pattern-recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). Root PTI pathways can differ from their above-ground counterparts and have been well-characterised in the model plant Arabidopsis thaliana but are not well-defined in crops. Gene repurposing coupled with differences in root tissues and root architecture in tomato species (Solanum lycopersicum and S. pimpinellifolium) led us to hypothesise that signalling pathways of Solanaceous-specific PRRs diverge from canonical pathways. The objective of this study was to characterise PTI signalling pathways and responses (ROS, MAPK, gene expression, and growth inhibition) in roots of wild and domesticated tomatoes downstream of three immune receptors: the well-conserved SlFLS2 and the Solanaeceous-specific FLS3 and CORE. We find that Solanum root PTI responses are concentrated in early differentiating root regions compared to late differentiating regions or whole roots, and that FLS3 and CORE signalling pathways are overlapping but distinct from each other and from FLS2. Although the early differentiating root region had strong PTI responses across Solanum cultivars and species, different genetic backgrounds varied in their response dynamics. Our results underscore the complexity of PTI signalling across species and highlight the developmental-stage specificity of tomato root immunity.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70164","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To combat soilborne pathogens, roots activate pattern-triggered immunity (PTI) through pattern-recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). Root PTI pathways can differ from their above-ground counterparts and have been well-characterised in the model plant Arabidopsis thaliana but are not well-defined in crops. Gene repurposing coupled with differences in root tissues and root architecture in tomato species (Solanum lycopersicum and S. pimpinellifolium) led us to hypothesise that signalling pathways of Solanaceous-specific PRRs diverge from canonical pathways. The objective of this study was to characterise PTI signalling pathways and responses (ROS, MAPK, gene expression, and growth inhibition) in roots of wild and domesticated tomatoes downstream of three immune receptors: the well-conserved SlFLS2 and the Solanaeceous-specific FLS3 and CORE. We find that Solanum root PTI responses are concentrated in early differentiating root regions compared to late differentiating regions or whole roots, and that FLS3 and CORE signalling pathways are overlapping but distinct from each other and from FLS2. Although the early differentiating root region had strong PTI responses across Solanum cultivars and species, different genetic backgrounds varied in their response dynamics. Our results underscore the complexity of PTI signalling across species and highlight the developmental-stage specificity of tomato root immunity.

番茄根系对细菌衍生肽表现出发育特异性反应。
为了对抗土传病原体,根系通过识别微生物相关分子模式(MAMPs)的模式识别受体(PRRs)激活模式触发免疫(PTI)。根系PTI通路可能不同于它们在地上的对立物,并且在模式植物拟南芥中得到了很好的表征,但在作物中没有明确定义。基因重组与番茄(Solanum lycopersicum和S. pimpinellifolium)根组织和根结构的差异使我们假设茄类特异性PRRs的信号通路与典型通路不同。本研究的目的是表征PTI信号通路和反应(ROS、MAPK、基因表达和生长抑制)在野生和驯化番茄根下游的三种免疫受体:保守的SlFLS2和solanaeceus特异性FLS3和CORE。研究发现,茄根PTI响应主要集中在分化早期的根区,而非分化后期的根区或全根,FLS3和CORE信号通路重叠,但与FLS2信号通路不同。虽然不同品种和物种的早分化根区对PTI有较强的响应,但不同遗传背景对PTI的响应动态存在差异。我们的研究结果强调了PTI信号在物种间的复杂性,并强调了番茄根系免疫的发育阶段特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信