Boaz Hilman, Emily F Solly, Frank Hagedorn, Iris Kuhlman, David Herrera-Ramírez, Susan Trumbore
{"title":"<sup>14</sup>C-Age of Carbon Used to Grow Fine Roots Reflects Tree Carbon Status.","authors":"Boaz Hilman, Emily F Solly, Frank Hagedorn, Iris Kuhlman, David Herrera-Ramírez, Susan Trumbore","doi":"10.1111/pce.70154","DOIUrl":null,"url":null,"abstract":"<p><p>The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by <sup>14</sup>C ages. Reported <sup>14</sup>C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared <sup>14</sup>C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth. Our results of increasing respiration rate and NSC concentration with ecotone elevation suggest an excess of C assimilation over growth and an increase in fresh NSC supply. Greater flow of fresh NSC through needles and branches could explain their young growth NSC (< 2 years). A smaller inflow of fresh NSC into roots could explain older growth NSC ages, which increased from 2 to 10 years from the valley to the bottom of the ecotone, and then declined to 6 years at the ecotone top. Rather than species differences that were small, environmental conditions over years appear to be the primary driver of C allocation dynamics, which are reflected in the <sup>14</sup>C-ages of fine roots.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70154","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by 14C ages. Reported 14C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared 14C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth. Our results of increasing respiration rate and NSC concentration with ecotone elevation suggest an excess of C assimilation over growth and an increase in fresh NSC supply. Greater flow of fresh NSC through needles and branches could explain their young growth NSC (< 2 years). A smaller inflow of fresh NSC into roots could explain older growth NSC ages, which increased from 2 to 10 years from the valley to the bottom of the ecotone, and then declined to 6 years at the ecotone top. Rather than species differences that were small, environmental conditions over years appear to be the primary driver of C allocation dynamics, which are reflected in the 14C-ages of fine roots.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.