Boaz Hilman, Emily F Solly, Frank Hagedorn, Iris Kuhlman, David Herrera-Ramírez, Susan Trumbore
{"title":"用于生长细根的碳的14c年龄反映了树木的碳状态。","authors":"Boaz Hilman, Emily F Solly, Frank Hagedorn, Iris Kuhlman, David Herrera-Ramírez, Susan Trumbore","doi":"10.1111/pce.70154","DOIUrl":null,"url":null,"abstract":"<p><p>The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by <sup>14</sup>C ages. Reported <sup>14</sup>C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared <sup>14</sup>C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth. Our results of increasing respiration rate and NSC concentration with ecotone elevation suggest an excess of C assimilation over growth and an increase in fresh NSC supply. Greater flow of fresh NSC through needles and branches could explain their young growth NSC (< 2 years). A smaller inflow of fresh NSC into roots could explain older growth NSC ages, which increased from 2 to 10 years from the valley to the bottom of the ecotone, and then declined to 6 years at the ecotone top. Rather than species differences that were small, environmental conditions over years appear to be the primary driver of C allocation dynamics, which are reflected in the <sup>14</sup>C-ages of fine roots.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<sup>14</sup>C-Age of Carbon Used to Grow Fine Roots Reflects Tree Carbon Status.\",\"authors\":\"Boaz Hilman, Emily F Solly, Frank Hagedorn, Iris Kuhlman, David Herrera-Ramírez, Susan Trumbore\",\"doi\":\"10.1111/pce.70154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by <sup>14</sup>C ages. Reported <sup>14</sup>C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared <sup>14</sup>C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth. Our results of increasing respiration rate and NSC concentration with ecotone elevation suggest an excess of C assimilation over growth and an increase in fresh NSC supply. Greater flow of fresh NSC through needles and branches could explain their young growth NSC (< 2 years). A smaller inflow of fresh NSC into roots could explain older growth NSC ages, which increased from 2 to 10 years from the valley to the bottom of the ecotone, and then declined to 6 years at the ecotone top. Rather than species differences that were small, environmental conditions over years appear to be the primary driver of C allocation dynamics, which are reflected in the <sup>14</sup>C-ages of fine roots.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70154\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70154","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
14C-Age of Carbon Used to Grow Fine Roots Reflects Tree Carbon Status.
The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by 14C ages. Reported 14C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared 14C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth. Our results of increasing respiration rate and NSC concentration with ecotone elevation suggest an excess of C assimilation over growth and an increase in fresh NSC supply. Greater flow of fresh NSC through needles and branches could explain their young growth NSC (< 2 years). A smaller inflow of fresh NSC into roots could explain older growth NSC ages, which increased from 2 to 10 years from the valley to the bottom of the ecotone, and then declined to 6 years at the ecotone top. Rather than species differences that were small, environmental conditions over years appear to be the primary driver of C allocation dynamics, which are reflected in the 14C-ages of fine roots.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.