ODR1是种子休眠和萌发的关键调控因子,通过与TTG1的相互作用和MBW复合物活性的调节,促进种子原花青素的生物合成

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Ling Ding, Xi Chen, Xu Wang, Wenhui Jiang, Xinyi Xu, Mengmeng Hou, Yuanbo Zhang, Zhiqiang Wu, Yuxiao Chang, Yong Xiang
{"title":"ODR1是种子休眠和萌发的关键调控因子,通过与TTG1的相互作用和MBW复合物活性的调节,促进种子原花青素的生物合成","authors":"Ling Ding,&nbsp;Xi Chen,&nbsp;Xu Wang,&nbsp;Wenhui Jiang,&nbsp;Xinyi Xu,&nbsp;Mengmeng Hou,&nbsp;Yuanbo Zhang,&nbsp;Zhiqiang Wu,&nbsp;Yuxiao Chang,&nbsp;Yong Xiang","doi":"10.1111/tpj.70434","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Seed dormancy and germination are crucial for both plant survival and reproduction and for crop sowing and harvesting. Proanthocyanidins (PAs), one of the most abundant seed metabolites, play a role in enhancing dormancy and inhibiting germination. Multiple regulatory factors involved in PAs biosynthesis can alter seed dormancy or germination capacity. However, whether the dormancy or germination factors reciprocally influence the PAs biosynthesis is unclear. Here, we report that ODR1, a seed dormancy and germination key factor and a transcriptional (co-) repressor, can regulate seed PAs biosynthesis and act as a transcriptional co-activator. The <i>odr1</i> mutant shows lighter seed coat color, decreased PAs contents, and reduced expression of PAs biosynthesis genes, which are restored in the <i>ODR1</i> complementary lines. ODR1 interacts with TTG1 and forms a complex with TTG1/TT2/TT8 (three MBW complex components), enhancing their activation on promoters of PAs biosynthesis genes like <i>DFR</i> and <i>ANS</i>. Overexpressing <i>TTG1</i> in the <i>odr1-2</i> mutant rescues or even reverses PA-related phenotypes of <i>odr1-2</i>, confirming that <i>ODR1</i>-mediated regulation of PAs biosynthesis is dependent on TTG1. Moreover, three homologous copies of <i>ODR1</i> in rapeseed were identified, and simultaneous knockout of them reduces the PAs contents. These results revealed the previously uncharacterized functions of ODR1 in PAs biosynthesis, suggested its conservation between Arabidopsis and rapeseed, and provided important gene resources for rapeseed variety improvement.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ODR1, the key seed dormancy and germination regulator, promotes seed Proanthocyanidin biosynthesis via interaction with TTG1 and modulation of MBW complex activity\",\"authors\":\"Ling Ding,&nbsp;Xi Chen,&nbsp;Xu Wang,&nbsp;Wenhui Jiang,&nbsp;Xinyi Xu,&nbsp;Mengmeng Hou,&nbsp;Yuanbo Zhang,&nbsp;Zhiqiang Wu,&nbsp;Yuxiao Chang,&nbsp;Yong Xiang\",\"doi\":\"10.1111/tpj.70434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Seed dormancy and germination are crucial for both plant survival and reproduction and for crop sowing and harvesting. Proanthocyanidins (PAs), one of the most abundant seed metabolites, play a role in enhancing dormancy and inhibiting germination. Multiple regulatory factors involved in PAs biosynthesis can alter seed dormancy or germination capacity. However, whether the dormancy or germination factors reciprocally influence the PAs biosynthesis is unclear. Here, we report that ODR1, a seed dormancy and germination key factor and a transcriptional (co-) repressor, can regulate seed PAs biosynthesis and act as a transcriptional co-activator. The <i>odr1</i> mutant shows lighter seed coat color, decreased PAs contents, and reduced expression of PAs biosynthesis genes, which are restored in the <i>ODR1</i> complementary lines. ODR1 interacts with TTG1 and forms a complex with TTG1/TT2/TT8 (three MBW complex components), enhancing their activation on promoters of PAs biosynthesis genes like <i>DFR</i> and <i>ANS</i>. Overexpressing <i>TTG1</i> in the <i>odr1-2</i> mutant rescues or even reverses PA-related phenotypes of <i>odr1-2</i>, confirming that <i>ODR1</i>-mediated regulation of PAs biosynthesis is dependent on TTG1. Moreover, three homologous copies of <i>ODR1</i> in rapeseed were identified, and simultaneous knockout of them reduces the PAs contents. These results revealed the previously uncharacterized functions of ODR1 in PAs biosynthesis, suggested its conservation between Arabidopsis and rapeseed, and provided important gene resources for rapeseed variety improvement.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70434\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70434","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

种子的休眠和萌发对植物的生存和繁殖以及作物的播种和收获都至关重要。原花青素(PAs)是种子代谢产物中含量最多的一种,具有促进休眠和抑制发芽的作用。PAs生物合成过程中涉及的多种调控因子可以改变种子的休眠或萌发能力。然而,休眠或萌发因素是否相互影响PAs的生物合成尚不清楚。在这里,我们报道了ODR1作为种子休眠和萌发的关键因子和转录(共)抑制因子,可以调节种子PAs的生物合成并作为转录共激活因子。突变体odr1种皮颜色变浅,PAs含量降低,PAs生物合成基因表达减少,这些在odr1互补系中得到恢复。ODR1与TTG1相互作用,并与TTG1/TT2/TT8(三种MBW复合物成分)形成复合物,增强其对DFR、ANS等PAs生物合成基因启动子的激活。在ODR1- 2突变体中过表达TTG1可挽救甚至逆转ODR1- 2的pa相关表型,证实ODR1介导的PAs生物合成调控依赖于TTG1。此外,在油菜籽中发现了三个同源的ODR1拷贝,同时敲除它们会降低PAs的含量。这些结果揭示了ODR1在PAs生物合成中的功能,提示了其在拟南芥和油菜籽之间的保守性,为油菜籽品种改良提供了重要的基因资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ODR1, the key seed dormancy and germination regulator, promotes seed Proanthocyanidin biosynthesis via interaction with TTG1 and modulation of MBW complex activity

Seed dormancy and germination are crucial for both plant survival and reproduction and for crop sowing and harvesting. Proanthocyanidins (PAs), one of the most abundant seed metabolites, play a role in enhancing dormancy and inhibiting germination. Multiple regulatory factors involved in PAs biosynthesis can alter seed dormancy or germination capacity. However, whether the dormancy or germination factors reciprocally influence the PAs biosynthesis is unclear. Here, we report that ODR1, a seed dormancy and germination key factor and a transcriptional (co-) repressor, can regulate seed PAs biosynthesis and act as a transcriptional co-activator. The odr1 mutant shows lighter seed coat color, decreased PAs contents, and reduced expression of PAs biosynthesis genes, which are restored in the ODR1 complementary lines. ODR1 interacts with TTG1 and forms a complex with TTG1/TT2/TT8 (three MBW complex components), enhancing their activation on promoters of PAs biosynthesis genes like DFR and ANS. Overexpressing TTG1 in the odr1-2 mutant rescues or even reverses PA-related phenotypes of odr1-2, confirming that ODR1-mediated regulation of PAs biosynthesis is dependent on TTG1. Moreover, three homologous copies of ODR1 in rapeseed were identified, and simultaneous knockout of them reduces the PAs contents. These results revealed the previously uncharacterized functions of ODR1 in PAs biosynthesis, suggested its conservation between Arabidopsis and rapeseed, and provided important gene resources for rapeseed variety improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信