Qingshun Nian, Xinru Yang, Hu Hong, Peng Chen, Yuwei Zhao, Haiming Lv and Chunyi Zhi
{"title":"Advancements in separator materials for aqueous zinc batteries","authors":"Qingshun Nian, Xinru Yang, Hu Hong, Peng Chen, Yuwei Zhao, Haiming Lv and Chunyi Zhi","doi":"10.1039/D5NH00172B","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc (Zn) batteries (AZBs) are becoming promising candidates for grid-scale energy storage because of their inherent safety, cost-effectiveness, and high theoretical capacity. However, their widespread application is hindered by critical challenges, including Zn dendrite formation, hydrogen evolution reaction (HER), corrosion, and cathode material dissolution. The separator plays a crucial role in regulating ion transport, suppressing side reactions, and promoting uniform Zn deposition. While recent advancements in separator design have introduced various modification strategies to enhance electrochemical performance, a systematic classification based on the modification location remains lacking. This review provides a comprehensive analysis of recent advancements in AZB separators, categorized by modification position—anode side, cathode side, and full-separator modifications. Key modification strategies, including ion-selective layers, interfacial engineering, and composite functional membranes, are discussed in detail, with an emphasis on their effects on Zn<small><sup>2+</sup></small> flux regulation, dendrite suppression, and long-term cycling stability. Additionally, emerging separator materials such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and inorganic–organic hybrid separators are highlighted for their potential in optimizing battery performance. By elucidating the underlying mechanisms governing separator modifications, this review provides theoretical insights and design principles for the development of next-generation AZB separators. Finally, we discuss future research directions, focusing on separator thinness, enhanced ion selectivity, interface stability, corrosion resistance, and scalable manufacturing to accelerate the commercialization of high-performance AZBs.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1932-1955"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00172b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc (Zn) batteries (AZBs) are becoming promising candidates for grid-scale energy storage because of their inherent safety, cost-effectiveness, and high theoretical capacity. However, their widespread application is hindered by critical challenges, including Zn dendrite formation, hydrogen evolution reaction (HER), corrosion, and cathode material dissolution. The separator plays a crucial role in regulating ion transport, suppressing side reactions, and promoting uniform Zn deposition. While recent advancements in separator design have introduced various modification strategies to enhance electrochemical performance, a systematic classification based on the modification location remains lacking. This review provides a comprehensive analysis of recent advancements in AZB separators, categorized by modification position—anode side, cathode side, and full-separator modifications. Key modification strategies, including ion-selective layers, interfacial engineering, and composite functional membranes, are discussed in detail, with an emphasis on their effects on Zn2+ flux regulation, dendrite suppression, and long-term cycling stability. Additionally, emerging separator materials such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and inorganic–organic hybrid separators are highlighted for their potential in optimizing battery performance. By elucidating the underlying mechanisms governing separator modifications, this review provides theoretical insights and design principles for the development of next-generation AZB separators. Finally, we discuss future research directions, focusing on separator thinness, enhanced ion selectivity, interface stability, corrosion resistance, and scalable manufacturing to accelerate the commercialization of high-performance AZBs.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.