Sofie Cambré, Wouter Van Werveke, Miguel De Clercq, Maksiem Erkens, Miles Martinati, Wim Wenseleers
{"title":"荧光激发图的定量二维拟合:单壁碳纳米管的激发线形状。","authors":"Sofie Cambré, Wouter Van Werveke, Miguel De Clercq, Maksiem Erkens, Miles Martinati, Wim Wenseleers","doi":"10.1039/d5nh00231a","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) fluorescence-excitation (PLE) spectroscopy offers a powerful way to analyse samples of semiconducting single-wall carbon nanotubes (SWCNTs). The one-to-one correspondence between the SWCNT chiral structure and its optically excited states allows for the identification of individual species based on peaks in 2D PLE data. Changes in the position, width and other features of the lineshape associated with a given peak reveal a plethora of information about the associated SWCNT chirality and <i>e.g.</i> its interactions with the environment. Consistent and physically relevant quantification of that information requires accurate fitting of the 2D data, which has long been hindered by the fact that a sufficiently accurate functional form for the excitation profile of SWCNTs was not known. Here we present a highly accurate analytical empirical model for the excitation lineshape and combine it with one for the emission lineshape in a 2D fitting model that produces accurate fits of 2D PLE maps for any SWCNT sample and allows straightforward extraction of lineshape features, including peak positions, linewidths and intensities as well as other relevant physical quantities such as phonon sidebands in the emission and excitation spectra.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative 2D fitting of fluorescence-excitation maps: excitation lineshape of single-wall carbon nanotubes.\",\"authors\":\"Sofie Cambré, Wouter Van Werveke, Miguel De Clercq, Maksiem Erkens, Miles Martinati, Wim Wenseleers\",\"doi\":\"10.1039/d5nh00231a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) fluorescence-excitation (PLE) spectroscopy offers a powerful way to analyse samples of semiconducting single-wall carbon nanotubes (SWCNTs). The one-to-one correspondence between the SWCNT chiral structure and its optically excited states allows for the identification of individual species based on peaks in 2D PLE data. Changes in the position, width and other features of the lineshape associated with a given peak reveal a plethora of information about the associated SWCNT chirality and <i>e.g.</i> its interactions with the environment. Consistent and physically relevant quantification of that information requires accurate fitting of the 2D data, which has long been hindered by the fact that a sufficiently accurate functional form for the excitation profile of SWCNTs was not known. Here we present a highly accurate analytical empirical model for the excitation lineshape and combine it with one for the emission lineshape in a 2D fitting model that produces accurate fits of 2D PLE maps for any SWCNT sample and allows straightforward extraction of lineshape features, including peak positions, linewidths and intensities as well as other relevant physical quantities such as phonon sidebands in the emission and excitation spectra.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00231a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00231a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quantitative 2D fitting of fluorescence-excitation maps: excitation lineshape of single-wall carbon nanotubes.
Two-dimensional (2D) fluorescence-excitation (PLE) spectroscopy offers a powerful way to analyse samples of semiconducting single-wall carbon nanotubes (SWCNTs). The one-to-one correspondence between the SWCNT chiral structure and its optically excited states allows for the identification of individual species based on peaks in 2D PLE data. Changes in the position, width and other features of the lineshape associated with a given peak reveal a plethora of information about the associated SWCNT chirality and e.g. its interactions with the environment. Consistent and physically relevant quantification of that information requires accurate fitting of the 2D data, which has long been hindered by the fact that a sufficiently accurate functional form for the excitation profile of SWCNTs was not known. Here we present a highly accurate analytical empirical model for the excitation lineshape and combine it with one for the emission lineshape in a 2D fitting model that produces accurate fits of 2D PLE maps for any SWCNT sample and allows straightforward extraction of lineshape features, including peak positions, linewidths and intensities as well as other relevant physical quantities such as phonon sidebands in the emission and excitation spectra.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.